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Section 1. - MODELLING

1.0 Introduction

This section describes the results of the first part of the NAVSTAR/
GPS Navigatipn Analysis and Algorithm Development Study. The purpose
of this first spetion is to define the models for use throughout the entirety
of the study. "FThe ultimate objective of the study is to determine a set of
algorithms which can be used in a NAVSTAR /GPS user navigation system.
The criteria for the acceptability of the algorithm will be the accuracy of
the position and velocity determination. Since there is no way of getting
real data for algorithm verification at this time, it is imperative to estab-
lish system and error models. The results of analysis of proposed algo-
rithms is then relative to the models used.

An additional objective of the entire study is that it will be a design
aid. Thus it is intended that through analysis of different receiver config-
urations, an analytic basis for certain design decisions can be established.
The final computer program for analysis will not be an interactive '};om-
puter aided delign‘ytool; however, it will provide for inclusion or exclusion
of certain receiver options and variability of certain parameters in order
to make the analysis useful for making design decisions.

The modelling effort for this task is divided into two\parts, Sys-
tem Model and Error Model., The System Model contains the satellite
model, user model, control system model, and data stream model. In
addition, scenarios are defired for evaluation of the proposed numerical
algorithms., The Error Model defines the contributors to the navigation
error, This includes errors in the system components, such as receiv-
er and transmitter errors, and error sources exogenous to the System
Model, such as atmospheric effects. The distinction between System

Model and Error Model is somewhat arbitrary in some instances. How-



ever, since the models are not intended to be used separately, this will
not cause any difficulty. The emphasis in this report is the form of the
models. Specific parameter values may be changed in the course of the
study; however, the form of the models should remain constant.

The parts of this report dealing with the system model have been
taken from various references (1, 3, 4, 6, 9, 15) and the applicable parts
selected for inclusion. A critical look has been taken at each model, but
no new models are presented. The error models are taken from various
references (7, 10, 11, 12, 14) also along with standard linear'models for
certain error types. Each error source was examined and the appropriate

model chosen according to accepted modelling procedures.

1.1 System Model

The System Model must be defined as completely as possible at
the outset of the study since the model serves as a set of ground rules.
The only major component of the system which will not be modelled is
the computational unit. This will have an effect on the algorithms; how-
ever, this effect is clearly beyond the scope of this study. The only config-
uration unknowns in the subsystems which are modelled are in the area of
the receiver model. Modelling of various types of user receivers will
aid in the development of the design specifications for the receiver., The
System Model is divided below into several segments solely for the pur-

pose of exposition.

1.1.1 Ephemeris Model

0 ‘xe ephemeris model is concerned with the satellite constella-
tion, the mathematical model for satellite motion, and the information
about the satellites which the control system segment supplies to the

user,




1.1.1.1 Satellite Constellation

The Phase III satellite constellation consists of twenty-four satel-
lites. The constellation will have three planes of satellites in approxi-
mately circular twelve-hour orbits, The orbit planes are inclined at ap-
proximately 63° and spaced so that the ascending nodes of the orbit planes
are 120° apart. Each orbit plane has eight satellites equally spaced in
the orbit. It is intended that between 6 and 11 satellites will be visible
from any point on the Earth at all times. On the average there will be
eight or nine satellites in view. A complete definition of the Phase III

satellite constellation can be found in reference 1.

1.1.1.2 Satellite Motion

The satellite motion generation for the System Model will use a
simple two-body orbit for each satellite. The positions of each satellite
with respect to the Earth could then be computed as a function of time
from the six orbital elements (2). The model used by the system for pre-
diction of satellite position uses fourteen elements to achieve the desired
navigational accuracy (3). Linear perturbations to this fourteen element
model can be expressed by the orbital element model. Therefore to
conserve computation in the error analysis, this simpler model can be used.

The nominal GPS orbit configuration calls for circular orbits. For
analysis purposes, this simplifies the satellite position and velocity
calculations since only four parameters must be specified; the radius
of the orbit, orbit inclination, longitude of ascending node, and time
of passage of the ascending node. In fact, all of the satellite locations
and velocities can be computed by orthogonal transformations of a

single satellite position and velocity

& TR i=2, 93, ..., 24




where Xi is the state vector for the ith satellite and Ti is an orthogonal

(length preserving) transformation.

1.1.1.3 Data Link Information

The control system segment of GPS as a part of ifs function sup-
plies orbit information to the user. There are two types of orbit data
provided. One type is the very accurate set of fourteen parameters which
are updated every day, the other type is the Almanac data.

The very precise data consists of fourteen parameters which are
to be used in conjunction with the nominal orbit parameters. The satel-
lite is updated once a day with twenty-four sets cf this data, Each data
set is optimized to fit the predicted orbit accurately over one hour. The
data sets should not be considered as true orbit parameters, but rather
as coefficients of a numerical fit to the predicted orbit. The parameters
take the form of orbital elements and additional information to account
for some of the error introduced by effects not considered in the standard
two-body orbit (viz. pole wobble, gravitational anomalies, solar pres-
sure, etc.). These corrections are valid only for the instant at which
they are comnputed and tend to degrade with time. Consequently, the con-
trol system segment tracks the satellites and updates these parameters
on twenty-four hour intervals (3). The most current information available

(4) lists the parameters as:

Mo - mean anomaly at reference time
An - mean motion deviation

e - eccentricity

ﬁ - square root of semi-major axis




1 - right ascension at reference
i - inclination at reference

W - argument of perigee
Q0 - rate of right ascension

- amplitude of the cosine harmonic correction term

Y€ to the argument of latitude

C __ - amplitude of the sine harmonic correction term

Y% to the argument of latitude

C - amplitude of the cosine harmonic correction term
rc "
to the orbit radius

Cra - amplitude of the sine harmonic correction term
to the orbit radius

Cic - amplitude of the cosine harmonic correction term
to the angle of inclination

Cis - amplitude of the sine harmonic correction term
to the angle of inclination

In addition, the following parameters are provided.

toe - reference time ephemeris
AODE - age of data (ephemeris)

The algorithm to convert this data to satellite position in ECI is

as follows:

14 meterl3 WGS 72 value of the Earth's uni-

"CZ versal gravitational parameter

~-5rad WGS 72 value of the Earth's rota-
sec tion rate

B = 3.986008 x 10

6e = 7.292115147 x 10

1

A= (Vz)z semi-major axis




=t-t *
tk oe

n=n + An
o

M =M +nt

k o k
Mk=Ek-¢esmEk
cos v, = (cos Ek - e)/(l-e cos Ek)

- il S
sin v, = #l - e“ sin Ek/(l-e cos Ek)

Qk s +w
buk = Cus sin ZOk + Cuc cos ZOk
Grk = crc cos ZOk + Crs sin ZQk

e, 4 y
61k Cic cos ZOk Cis sin ZOk

u, = Ok + buk
TS A(l - e cos Ek) + Grk
=i+ 84

x; =r, cosu

Ve = Yo l’ml.nk

O =0 +@-0) -0t

k o e k e oe

computed mean motion

time from epoch

corrected mean motion
mean anomaly

Kepler's equation for
eccentric anomaly

true anomaly

argument of latitude

\
argument of latitude

correction
second
radius correction P harmonic
perturbations

correction to inclina-
tion P,

corrected argument
of latitude

corrected radius

corrected inclination

position in orbital
plane o

corrected longitude of
ascending node

t is GPS system time at time of tranumi.non, i.e., GPS time corrected

for transit time (range /speed of light)
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oy '}
x, = x cos Ok-yk cos ik sinﬂk

’ ’ .
Vi = % sin ﬂk * v, cos i, cos ﬂk Earth fixed coordinates

!
z, =YV sin Xk

4

Tentative scaling and resolution information for each parameter
are contained in reference 4,

The data stream from each satellite includes Almanac data for
all of the satellites. This data consists of orbital elements, satellite
ID and health, and time parameters (4). The Almanac parameters may
be used for alert calculations to determine which satellites are 'in view',
i.e., which may be received. It is not intended that Almanac data be
used for precise navigation, but it will be useful for acquisition. Al-

manac data is updated every six days (4).
1.1.2 Time Model

The time model is concerned with the satellite clock and deter-
ministic delays in the downlink, The system model of time (3, 4) has
terms in it so that the user can correct the measured time of arrival
of the satellite signal for the deterministic part of clock off-sets, biases,

satellite electronic delays, relativistic effects, and atmospheric delays.
1.1.2.1 Clock Model

The satellite oscillator frequency is set at a nominal value which
includes a frequency offset to account for the relativistic effects in the
nominal orbit. The control system segment of GPS then monitors each
satellite vehicle clock to calibrate deterministic errors in the present
value such as offset, frequency bias, and relativistic effects due to off-

nominal orbits. The control system then computes three parameters




with which the user may correct the system time. These are sent as
part of the data from the satellite to the user. The correction param-
eters are the coefficients of a polynomial correction which the user can
apply. This correction has the form:

2

at = a, * al(ts iy toc) * az(ts = toc)

so that
t =t 4+ M
8
where

as a,, a, are the correction parameters
ts is the satellite vehicle time

toc is the satellite vehicle clock epoch time :

\
\
\

t is the corrected system time

The coefficients a,, al, and a, are computed to fit the predicted
clock behavior over small time intervals. The control system sends new
sets of these parameters to the satellite every day.

For t-toc € 45 min,, the approximations provide errors less than
5 nanosecond. After 45 minutes, these errors of approximation degrade

as:

t-toc error

1 hr 1 ns

2 hr 8 ns

3 hr 26 ns

4 hr 60 ns
8
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This polynomial form of the correction does not provide for a

graceful degradation of the relativistic errors. A more graceful degra-

dation of error can be achieved by using the following correction 4):

~

2
at = (.o- aOr) s (al B ‘lr)(tl E toc')'+ (‘z 5 aZr)(ts = toc) . Atr

where
& -10 _sec .
Atr = (-4. 443 x 10 \m) e VA sin E (t)

A -10 sec ;
a . = -4.443 x 10 N i VA sin E (toc)
& -10 _sec
8, = -4.443 x 10 e eVA ncos E (toc)/[l -ecos E (toc)]

-10 sec 2
2p = 2.2215 x 10 ﬁ

e VA x'Az sin E (toc)/[l -ecos E (toc)]

The rationale for this type of correction can be found in refer-

ence 14 and in references 18 and 52 of reference 14,

1.1.2.2 Atmospheric Model

The atmospheric model is constructed to predict the range error
introduced by propagation error due to the atmosphere, specifically the
ionospheric and tropospheric delay, Of the two, the tropospheric error
has less variation and the range error, AR, can be approximated to bet-
ter than 1 ft at elevations greater than 10° and better than 5 ft at eleva-
tions between 5° and 10° by the simple formula (3)

AR = K cscE




or (12)

1

SR &R sinE +, 026

where

E, the elevation angle from the user to the satellite is greater

than 5° and from (3) K is a constant (*~ 4 ft),

The user will use one of these models to compensate for tropospheric
range errors.

The ionospheric model must account for seasonal and diurnal
variations and latitude dependencies (3). There are two correction
schemes available to the user. The first method uses eight parameters
which are sent in the data stream. It should be noted that the following
model is new and documentation as to its validity is not yet available.

The ionospheric correction time T is calculated by

IONO
-9 : n xz x4
A - — ——
F* |5, x 1077 + n§oan¢m o S , |x] <1.57
Tiono © . KEme
F* 5, x 10 . |x| 21.57
where

g g; - 50400)

n
nE‘-'Opn wm

10




i
b1
&

and
3
F =1, +16. [.53 - E]

an and Bn; n=0, 1, 2, and 3; are the satellite transmitted data words.

Other equations that must be solved are
t = 4,32 x 104 xi + GPS time (sec); t> 86400 use t =t - 86400

., =% + 0,064 cos (ki - 1.617) (semi-circles)

£k +\TlsinA

1 u C(')!i

(semi-circles)
'Pu + Wcos A (semi-circles), <P“ < ,416 (semi-circles)
® . <pu 2 ,416 (semi-circles)

g = 0:0137

*E+o0.11 0. 022 (semi-circles)

The terms used in computation of ionospheric delay are as follows:

* Satellite Transmitted Terms

a - the coefficients of a cubic equation representing the
amplitude of the vertical delay (4 coefficients - 8 bits
each)

B_ - the coefficients of a cubic equation representing the
normalized period of the model. The true period

has been divided by 27, (4 coefficients - 8 bits each)

11




* Receiver Generated Terms

E

© -
u

x -

u

elevation angle between the user and satellite (semi-
circles)

azimuth angle between the user and satellite, mea-
sured clockwise positive from the true North (semi-
circles)

user geodetic latitude (semi-circles) WGS-72

user geodetic longitude (semi-circles) WGS-72

GPS time - receiver computed system time

* Computed Terms

i

The values of do.

obliquity factor (dimensionless)
local time (sec)

geomagnetic latitude of the Earth projection of the
ionospheric intersection point (mean ionospheric
height assumed 350 km) (semi-circles)

geodetic longitude of the Earth projection of the iono-
spheric intersection point (semi-circles)

geodetic latitude of the Earth projection of the iono-
spheric intersection point (semi-circles)

Earth's central angle between user position and Earth
projection of ionospheric intersection point. (semi-

circles)

@, a,, and ay; and, ‘0' Bl. ﬁz, and 33 are transmitted

in Data Block I with 8 bits/coefficient or 64 bits total.

For a dual

frequency receiver, an alternate correction scheme may

be used to calculate the user range error. The range error is calculated

according to (3)
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where

Rl is pseudo-range at frequency fl (denoted Ll)

R2 is pseudo-range at frequency fz (denoted LZ)

ARI is the range error of R1

The dual frequency ionospheric delay correction scheme does not
require any external data source. It does require reception of two dis-

tinct frequencies, Ll and L, from the satellite. This correction scheme

2.
removes more of the uncertainty due to ionospheric delays.

1.1.3 Receiver Model

2 One of the purposes of thig entire study is to aid in the design of
the receiver by performing trade-off studies. For this reason, the base-
line receiver model has not been established. This section will thus present
the alternatives for the trade-off studies and point out other areas of the
receiver model which impact the navigation problem. The trade-off areas
are 1) single channel or multiple channel receiver, 2) range and range
rate or range only data, and 3) whether to demodulate the incoming infor-
mation stream., Other areas of importance to the navigation problem in-
clude the data interface between the receiver and the processor, acquisition
time, and the frequency of measurements. The accuracy of the receiver
will be discussed in the error model section.

At the present time, there are three candidate receiver configura-
tions. They are 1) dual-frequency multi-channel, 2) single-frequency sin-
gle channel for P code and C/A, and 3) single-frequency single channel
C/A only,

13




1.1.3.1 Receiver Channels

The trade-off in the number of channels is, of course, cost vs.
navigational accuracy. In addition, the time to first fix and through put
must be considered. The following describe the processing considera-

tions of single-channel and four-channel receivers.

}.1.3. 1, 1 Single Channel Receiver

In order for a single-channel receiver to supply sufficient data
for accurate navigation, it must switch between satellites for each new
piece of data. This switching involves the acquisition time for each new
satellite. This is particularly important in a single fix case where four
different satellites must be received before any position computation can
be made. If recursive filtering of data is to be done, then each satellite
measurement can be incorporated in a sequential fashion as it is received.
The acquisition time from one satellite to the next thus becomes an important

parameter of the navigation accuracy in the single-channel receiver.

1.1.3.1.2 Four-Channel Receiver

This is a special case of a multiple-channel receiver. A four-
channel receiver is being considered since this is the minimum needed
to get a single fix without having to switch satellites. With four chan-
nels of data reception, acquisition time does not effect the accuracy of
the navigation algorithms. Even in a recursive filtering mode, some
data is available while other satellites are being acquired. With a four-
channel receiver, either sequential or batch processing of data may be
utilized and should be analyzed.

14
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1.1.3.2 Measurables

The trade-off to be made in this area is whether or not to make
Doppler measurements in addition to time-of-arrival measurements.
Making Doppler measurements adds to the complexity of both the hard-
ware and the navigational software. The additional cost will be traded-
off against the navigational accuracy obtainable. The Doppler measure-
ments will be particularly useful in reducing platform position and

velocity uncertainties when platform accelerations are taking place.

1.1,3.3 Data Demodulation

This trade-off concerns whether the ephemeris and clock data
will be extracted from the satellite signal. If the data is not demodu-
lated, the nominal values must be used for these parameters. It is
possible that some method for updating the nominal values on some in-
frequent basis can be arranged. Both the hardware and the processing
software can be simplified if it is not necessary to demodulate data. The
trade-off here is a rather large degradation of navigational accuracy.
(Note - It may be possible to reduce the effect of not demodulating data
through increased computational complexity. The study of this case is
beyond the scope of this study. )

1.1.3.4 Receiver Frequencies

The satellites transmit on two separate frequencies denoted Ll
and Lz. All of the information required for navigation is contained on
each frequency. Reception on two frequencies, in addition to two sets
of data, allows a more accurate estimation of ionospheric delay errors.
The methods for determining ionaspheric delay errors for the single
and dual frequency have been described above in Section 1. 1. 2.2,
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1.1.3.5 Other Parameters

The receiver model also consists of the required interface
between itself and the navigation processor. It will be necessary to
specify the output formats, resolutions, time delays, frequency of mea-
surements, and acquisition times., These values can be considered as

parameters of the study.

1.1.4 Reception Model

For the purpose of this study, a simplified reception model will
be used. It will be assumed that there is sufficient gain in the receiver
and user antenna to receive signals from any satellite which is a fixed
angle Y (five degrees in this study) above the horizontal phane.

The effects on satellite visbility due to platform pitch
and roll will be modelled as a decrease in the cone of reception corre-
sponding to the pitch and roll angle. This is a reasonable model since
pitch and roll periods in other simulations (5) are shorter than probable
acquisition times (6). Further study will have to be done to see if two
separate parameters are .equired to characterize the reduction of the
cone of reception. Two parameters may be required since the require-
ments to re-acquire a signal momentarily lost may be considerably dif-

ferent than the requirements to acquire a new signal.

1,1.5 |Integration of Other Sensors

The system model also contains provisions for integrating mea-
surements from three other sensors into the navigation algorithm. These
sensors are the EM log, gyrocompass, and Omega receiver. The sys-
tem and error models for these are taken from reference 7. The refer-

ence goes into considerable detail in the development of these models.
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It also cites the primary references for the models to be used in this
study. These sensors are actually external to the NAVSTAR /GPS sys-
tem. Their inclusion is to evaluate the accuracy improvement obtain-
able from the relatively minimal cost of the integration of these data
sources. It may also be possible to use the GPS data to calibrate the

other sensors for times when GPS is not available.

1.1.5.1 EM Log

The EM log is an instrument which measures a ship's speed
along its longitudinal axis. The measured speed is with respect to the

water so that ocean currents become a source of error.

1.1.5.2 Gyrocompass

The gyrocompass is an instrument aboard ship which indicates
the ships heading. This heading information then combined with the EM
log data gives the ship's velocity, The pitch and roll information can
be used to modify the set of possible satellites which can be tracked.

1:1:5.,3 Omega Receiver

Omega is a land-based worldwide coverage hyperbolic radio navi-
gation system. The Omega receiver receives signals from the transmit-
ting stations and determines the user position, The basic measurable is
a phase difference from two transmitting stations. The system model
consists of four Omega transmitters so that three independent lines

of position are available.

1.1.6 Scenarios

The following scenarios have been selected for use in the analysis

17




of the navigation algorithms. These scenarios were chosen at random
and not contrived to emphasize any particular point. The scenarios are

intended to be two typical cases. They are depicted in Figures 1-1 and 1-2.

Test Scenarios

#1 Ship initially at 45°N 160°W travelling due south at 10 kts

at t = 30 secs. accelerate to 30 kts at rate of . 5 kts/sec

at t = 72 secs turn starboard to 360° at 1°/sec and decelerate to
15 kts at .25 kts/sec

at t = 260 secs turn port to 300° at 3°/sec followed by an additional
turn to port of 30° at . 5%/sec

at t = 350 secs decelerate to stop at .1 kts/sec

at t = 530 secs accelerate at . 05 kts/sec and turn port at accelerat-

ing rate of . Ol°/secZ for 100 secs. Maintain turn rate at
1°/sec. Change acceleration to . 2 kts/sec for 40 secs.
Maintain velocity and heading for 40 seconds.

Total run: 710 secs

#2 Aircraft initially at 32°N 120°W travelling West at 600 kts.
Altitude 38, 000 ft

at t = 0 secs accelerate at 2 kts/sec for 5 min

at t = 300 secs turn to port at 5%/sec for 36 secs.
at t = 360 secs turn port at . 5°/sec for 120 secs
End at t = 600 secs

18
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1.2 Error Model

The error model is a model of those effects which tend to degrade
the accuracy of the NAVSTAR /GPS navigation mechanization. To make a
meaningful evaluation of any proposed navigation algorithm, it is impor-
tant to have a realistic error model containing all of the oignificant'error
sources. However, in a system as complex as the NAVSTAR/GPS navi-
gation system, this groundrule would demand an error model consisting
of hundreds of states. The error model outlir2d below will attempt to
simplify most of the individual error models to keep the total number of
states down while maintaining the integrity of the error model. Each
reduced state error model will be. justified within the report or the
references cited.

Much of the analytic work which uses this error model takes the
form of linearized covariance analysis, For this reason it is desirable to
not only make the error models simple, but to pose as many of them as
possible as linear models; i.e., error models whose behavior is described
by linear differential or difference equations. Models of this form are then

easily adapted to methods of linear analysis,

1.2.1 Ephemeris Error Model

A complete error model for satellite position and velocity uncer-
tainties is a large order system containing many high-order gravity har-
monic errors. This type of model is used and is necessary for accurate
satellite position determination and prediction over long time intervals.
When residual errors to accurate position predictions are considered,
the effects of the high-order gravity harmonics are negligible. This
justifies the use of the two-body orbit equations, utilising just six states
per satellite, for propagating satellite position errors. These six states
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can be propagated from initial conditions by a state transition matrix
calculated in closed form (8).

Propagating six states per satellite for up to eleven visible satel-
lites is still a large number of states. Further reduction in the number
of states is‘th;u desirable. One way of doing this is to assume that the
Position uncertainty is constant rather than growing with time. Since
the growth is very small, choosing the maximum user equivalent range
error as the constant uncertainty along each axis will give a realistic
though somewhat pessimistic model for the ephemeris. Furthermore,
assume that the errors are given initially in the principal axes, so that
the initial error covariance matrix is diagonal. This can be expressed

by

(] 8% o

o 2
E[AX] = [0 [;E[AX AX"] =|0 ¢ 0
0 0 0 oz

where

AX is the satellite position error vector

O is the user equivalent range error for Phase III specified

in Reference 9, p, 8.

Another source of error in the ephemeris model arises numeri-
cally. This error is the difference between the control segment predicted
satellite position and the position coniputed by the user from the received
data. In reference (15), it is shown that this error source can be made

negligible by scaling of data and careful algorithm design,
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1.2.2 Time Error Model

As in the system time model, the time error model consists of
a satellite clock error model and an atmospheric delay error model. In
addition a user clock error model must be considered. The time error
model, like the ephemeris error model, is concerned with the modelling
of the residual errors between actual time and the system model of time
(Section 1,1.2). Now the errors in time and ephemeris are correlated
inherently by the methods which the control system segment uses to es-
timate the system model parameters (3). Ignoring such correlations
may give somewhat optimistic results, however determination of such
correlations would require extensive simulation of the control system
segment estimation techniques. This is clearly not within the scope of

the present study.

1.2.2.1 Satellite Clock Error Model

The residual time error consists of two parts, the error in the
predicted correction parameters and the random part. The errors in
the correction parameters, which represent bias error, frequency error,
and frequency rate error, are used to determine initial conditions for
the dynamic error model of the satellite clock. The type of error model
required for the random part can be determined from the curves of the
Allan varia.nce* (10) for the clock. For the Phase III system, Cesium
beam clocks will be used in the satellites. These clocks will be updated
every day so that the error model is based on the twenty-four hour vari-
ance. The Allan variance of the typical Cesium beam clock data indicates

the fractional frequency error can be modelled as a white noise (i.e.,

*
The Allan variance is the variance of the fractional frequency error as
a function of the sampling interval 7. See reference 10 for details.
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Flicker noise and integrated white noise are not important for times

less than one day). The satellite clock error model is thus

xln 9.1 x'lrl + e
g i u(t)
x2 0 0 xZn 0
h

X, is the time error of the nt satellite clock

where

x5 is the frequency bias error of the nth satellite clock

o is PSD magnitude (typically for Cesium Beam ¢ = 10-ll

sec/secl/z)

u(t) is white noise with unity PSD

55 x. (0) is the error in a
In o

xzn(O) is the error in al

1.2,2.2 User Clock Error Model

The user clock error model is based on data for typical crystal
oscillators. The Allan variance for crystal oscillator clocks indicates
that the error model over the times of interest consists of a fractional
frequency error model with white noise, flicker noise, and integrated
white noise. Following the procedures in reference 10, a clock model
for the user which also includes a frequency offset and an aging coeffi-

cient is given by the following seven-state description,
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n is the order of the flicker noise model (3 in this case)
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8 = an lOM/ZO

M = gain at W, in dB (for crystal clocks ~ .220)

o T3
60n2
“ cTr
2
PR
1'1. 1’2, ‘r3 are parameters of the Allan variance curve (10)

Typical values for a crystal oscillator are ‘rl = ,5 sec,

£ i 4
TZ = 80 sec, 73- 5x10 sec

The state X, is the user clock error in setonds. The parameters 1’1.

Ty Ty and M will depend on the particular oscillator type chosen for

the user frequency standard.

1.2.2.3 Atmospheric Delay Error Model

The atmospheric delay error model consists of a residual
error model for both ionospheric and tropospheric delays. The larg-
est uncertainties are the ionospheric model when a single frequency is
used. The ionospheric error model discussed here is e residual
model for the single frequency case. The dual frequency correction
will be considered to have negligible residual time error.

The tropospheric error model is an uncertainty in the correc-

tion constant K (see Section 1.1.2,2 above). The time error in the
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incoming signal is a zero mean random constant AK times the cosecant
of the elevation angle. The variance of AK is approximately . 1K (3).
This error source is independent of the other time models.

The ionospheric residual error model (see references 11 and 14)
is modelled as a Gauss-Markov error source which is correlated in both
time and distance. The c.ovari_ancue of two.meaaurements at two different
times and two different places will bg modelled as (12)

R R, = AR AR, (8t (Ap)

where

ARl, AR2 are the prediction reu.iduals

B8R, = ¢ cac[¥E + (1897

€ is the RMS correction error

Ei is the elevation angle for the ith measurement in degrees
At is the time difference between measurements

Op is distance between the ionospheric ''pierce points"
of the measurements (The pierce point is the point at
which the transmitted signal intersects the ionosphere.
The ionosphere here is assumed to be a thin shell 350 km

above the surface of the Earth)

4 For the simulations in this study, the functions "t and np can be
F approximated over the range of interest from the data in reference 12.
(The model given in references 12 and 14 have two time constants, but

for times in the selected scenarios, one is sufficient.)

E
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"t(f) e‘7/6.7 h!‘.

-p/2500 km
ﬂp(P) e

s
In order to model this covariance in a linear system model, the
distance correlation will' be changed to a time function. This can be done
since the ''pierce point'' of the 350 km altitude ionosphere shell moves
with a constant velocity when the satellite orbits are circular. Thus re-
placing p with g + 7, when p is constant, transforms the spatial correla-

tion into a time function. Combining n, and np then yields a Gauss-Markov

model with a modified time constant. So

-7/6.7 hr_ -7+ p/2500 km

Q
"

ARl ARz e

r 4 0 )
DR AR, e ‘6.7 hr = 2500km

~ ARIARze-‘r/l. 17 hr

where § & 27 ° (6378 km + 350 km)/24 hr ® 1761 km/hr. 24 hr is the
apparent period of the satellite with respect to an Earth fixed coordinate
frame. In addition, p can be modified to account for user motion.

The ionospheric delay error for each satellite can be modelled
as above. In addition, a cross-correlation of the ionospheric delay
error between the various satellites can be computed using the original

formula above.

1.2.3 Receiver Measurement Error Model

The exact form of the receiver is as yet unresolved. The error
model of the measured data is for one channel of both time of arrival

measurements (for pseudo-range or range difference) and Doppler mea-
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surements (for pseudo range rate). The Doppler errors are not
independent for the case of multi-channel reception. The multi-channel
error model can be put together from copies of the single-channel model

with the correlations noted and accounted for,

1.2.3,1 TOA (Time of Arrival) Meuufement Error Model

The primary error in the TOA measurement is the user clock
error which has been described in Sec. 1.2,.2.2. In addition to this is
a uniformly distributed random error corresponding to the measure-
ment resolution. This may result from the clock resolution or the finite
word length of the time data. The mean error will be different for the
case where the data is rounded rather than truncated. Let btre’ denote

the resolution error, then

0 for rounded error
E(8 t".) = { }
. 54t for truncated error
res
Emz ) = At:‘l
res 12

where At". is the smallest unit of time resolvable., If the resolution
is very fine, other measurement errors will limit how small the TOA
errors may become. In either case a random measurement error will
be included.

1.2.3.2 Doppler Measurement Error Model

Ideally a Doppler measurement is an instantaneous determination
of frequency. Practically, this is not possible so a count of frequency

over a short time is done. This can be represented as
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where

]
N = S (g yp - Wg)dt
to

N is the Doppler count

wRef is the reference frequency w, +w

Dap Ty

wR is the receiver's estimate of the transmitted signal frequency
W, is an offset frequency so that N is always > 0

wy is the received frequency wy = W, + wD

W is the transmitted frequency

wD is the Doppler shift frequency

Now if the time period t1 - to =6t is short compared to the domi-

nant dynamics of the system; i.e., the user and the satellite, the Doppler

frequency can be assumed constant over 8t and

NG Tty
D c P

where P is the assumed constant range rate between the user and the
transmitting satellite, P = V- u ., V is the relative velocity and u is

the unit line-of-gight (LOS) vector, and C is the speed of light,

The Doppler count equation can then be integrated to get N
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Wr
N = (wR+wo-wT)6t-—c—;56t

The error equation for AN, the Doppler count residual is

mTo t

’ I} 8
AN = AbtuT(l + C) - otAwT(l + C) -z Ap

since p << C, this reduces to

.
AN = Abtw, - OrtAwT =¥ 6tap

The above equation has assumed that time 6t and the frequency
(wR + wo) are derived from the same oscillator so that the product
(wR + wo)ot is error free.

The term AP is a function of uncertainties in user position, user
velocity, satellite position, and satellite velocity. Of these, the satel-
lite contributions are negligible since the ephemeris data gives extreme-
ly accurate delta range information. Expanding AP in terms of the user

states yields (see Ref. 7 for details)

()'cu-i(a) (X =X ), (\'ru-\'{’) (Y, -Y),
ap = A% - 2. Axu+ P £ R Rk

P
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where

1
u has been assumed to be [(Xu -X ), (Y -Y), (Z - Zs)] . n;”'

p is the user to satellite range

X , Y, Z are the user coordinates
u u u

Xs, Y’, Zs are the transmitting satellite coordinates

Not included in the above model are the refractive errors. The refrac-
tive errors occur because the transmitting satellite is outside the atmo-
sphere. It is shown in reference 13 that the Doppler shift due to the trans-
mitter and the receiver velocities are dependent on the velocity of light
in their respective media. Ignoring this leads to a negligible error since
the light velocity difference is of the order of . 03%. The other refrac-
tion error is a change in the direction of the incoming signal from the
calculated line of sight. Arguments similar to those in Ref, 13 show
that this error is negligible in the GPS geometry.

Additionally, there is a truncation or round-off error similar to

the TOA error above.

1.2, 4 Other Sensors

The error models for the EM log, gyrocompass and Omega are

taken from Ref, 7.

1.2.4.1 EM Log Error Model

The state space error model for the EM log is

x 0 0 x .193 0

1 1

x 0 -.00185 xz 0 . 0257 uz

"
+

32




where x) represents a random walk error state and x, represents a
Gauss-Markov error source with correlation time = , 15 hrs and RMS
value = , 422 fps ; u, and u, are white noise with unity PSD; E[xi(O)] =
71.23 fpaz; E[xzz(O)] =,178 fpsz.

The output model is

y = xl+x2+qu3

where
0 = .472 fps measurement noise (10)

u, is white noise with unity PSD

1.2.4.2 Gyrocompass

The state space error model for the gyrocompass is

0 0 x 1.68 x 10‘3 0 \/u

-4
x, 0 -7.25x 10 x, 0 .0133 Uy

“o
—
n
L
+

where

x, isa random walk bias state . 013°/we_c(lc)

:2 is a Gauss-Markov error with correlation time = 23 min
and RMS value = . 35°

u, and u, are white noises with unity PSD
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Elx(0)] = 0 E[xJ(0)]= . 1225 deg’
The output is modelled as

y = x, +x, + Ou

1 2 3
where
{. 15 deg 10 no maneuvers
g =
.52 deg 10 during maneuvers
u, is white noise with unity PSD

1.2.4.3 Omega Error Model

The details of the derivation of the Omega error modél can be
found in Ref, 7. The state space equations for the phase error for each

station are:

§. 5l & i 5
Fxl 0 o 0 o0 Fxl K
x 0o -B 0 0 x o
2 = 2 + u(t)
5:3 0 0 0 1 x, 0
X 0 0 wz 0 0
- x
e $; b bt bus - A
where

xl is a bias state

x, is a Gauss-Markov error
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Xy X, form a sinusoidal (periodic) error with period w

B = (1/3600)lec.l

w = (29 /12) hr~}

*
cz = ,00277 ccnticyclelz/lecz

E[xlz(O)] = 8.5,centicyclelz

E[xzz(O)] 54 centicyclecz
u/t) is a white noise with unity PSD
E[xsz(O)] = 5, centicyclel2

E[x4z(0)] = 1,05 x 10-7 centicyclelz

Converting this phase error into eq.uivalent position e¢rror of the
user is a function of the user location. Details of the calculation may

be found in reference 7.

1.2.5 Platform Error Model

To account for random motions and accelations of the user, the
position, velocity and acceleration states will be modelled as random
walks., The magnitudes of the random walk driving noise variances will

vary according to the type of platform and the scenario.

*A centicycle is 1/100 of a cycle.
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Section 2. - SINGLE FIX ALGORITHM

2.0 Introduction

This section is concerned with the problem of determining an ac-
curate estimate of a user location, i.e., a navigational fix, using the
minimum amount of data required for the fix. This first step in the de-
velopment of the NAVSTAR /GPS navigation algorithm is called the single
fix algorithm. In some system configurations, the initial fix may be made
simply by entry of present position derived from other navigation aid
sources such as inertial navigation systems, star fixes, Omega, etc.,
or from known initial conditions. The single fix algorithm is, however,
needed to establish initial conditions for some system configurations.
Additionally it may be used to make the NAVSTAR /GPS system autono-
mous even if other data sources are available and it may be used in some
pseudo-measurement mechanizations (e.g. the @-p filter in section 3).

The single-fix algorithm as presented in this re;;ort consists of
two distinct parts. The first part is the selection of the available satel-
lites to use for the navigation fix. The second part is the actual position
determination using the time of arrival data from the selected satellites.
The single-fix algorithms may be mechanized for either position only or
position plus user clock bias. The body of the report is concerned with
the latter case. The mechanization for the position only algorithm is
discussed in Appendix 2 of Reference 16.

Processing of the measurables for the single-fix algorithm falls
into two categories, batch and sequential processing. This section is
concerned with iterative techniques for batch processing of data. Se-
quential processing mechanizations fall more naturally in the domain
of recursive filtering algorithms. As such these techniques will be
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studied in subsequent sections of this report as part of the start-up pro-
cedures for the recursive filtering algorithms. Recursive fiiters which
can be initialized from relatively crude initial conditions may be thought
of as having a built-in single-fix capability. In this sense a separate
single-fix algorithm as described herein may not be needed to initialize
all of the candidate recursive filters. This does not, however, preclude
the use for other purposes.

This section is organized in four subsections corresponding to
four areas of the single-fix algorithm development and analysis. Section
2.1 describes the candidate alert algorithms, one from the GDE proposal (3)
and one proposed maximum volume using a known principle for approximate
minimization of GDOP. Section 2.2 developes the algorithms for solving
the set of non-linear equations to determine position. Section 2.3 describes
the techniques used to evaluate the algorithms developed in Section 2.2.
The results from the studies of Sections 2.1-2. 3 are given in Section 2. 4.
All of the computer programs used in the analyses are given in Appendix 1

of Reference 16.

2.1 Alert Algorithm for Single-fix

The measure of a good alert algorithm is the value of GDOP (6)
for the satellites which it selects. The nature of GDOP does not allow
for any exact methods of GDOP minimization short of an exhaustive
enumeration of all possibilities. With from six to eleven satellites
visible at any point in time, an exhaustive enumeration may take too
much computation time. For this reason, two approximate GDOP mini-
mizations are also being considered as candidates for the alert calcula-
tions. The first technique is the one developed by GDE for its proposal (3).
The second technique is based on an approximate maximization of the
tetrahedron enclosed by four satellites. The form of the GDOP calcula-
tions used will be described in Section 2. 3.
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2.1.1 GDE Alert Algorithm (3, p. 1-39 to 1-41)

This algorithm gives criteria for the selection of the four satel-
lites to be used. The minimizations /maximizations to be performed
involve only dot products of vectors and so are simple and fast compu -
tationally. This method proceeds as follows:

Satellite No. 1 selection: Choose the satellite which is closest
to the zenith. This is found by maximizing the dot product of the unit

vector to the user with the unit vector from the user to the satellites.

1°% Satellite No. = i suchthatU - U 2 U + U
My Mgty Yy

where

I_Ju is the ECI unit vector to the user
Qk is the unit vector along the line of sight from the user to
the k' satellite ( k=i, j)

j varies over the visible satellites

Satellite No. 2 selection: The second satellite is chosen as the
satellite among those visible which is closest to the horizon but not
in the same orbit plane as the first selected satellite.

an Satellite No. = i such that

1) yi . _q“ £ ‘I‘Jj . -qu with j varying over the visible satellites
2) i is not in the same orbit plane as the first selected satellite.

Satellite No. 3 selection: The third satellite is selected as the
one among the visible satellites which is closest to being orthogonal to
both the first and second satellites selected.

rd

3" " Satellite No. = { such that

CARRUARS AL |4 @, X u,)|
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’ where

j varies over the visible satellite and U, is the unit vector
from the user to the satellite chosen as Satellite No. 1 and
U, is the unit vector from the user to the satellite chosen as
Satellite No. 2.

Satellite No. 4 selection: This satellite is chosen as the one
which is closest to the vector sum of the first three.

4th Satellite No. = i such that

U - (U +U

2 3)

. j varies over the visible satellites

a .
+U) U " (U +U, +U

where
U3 is the unit vector from the user to the satellite chosen as
Satellite No. 3.
It should be noted that the reference contains some obvious errors which
have been corrected in this summary. The above described algorithm

is the one which was used for purposes of comparison.

2.1.2 Maximum Volume Alert Algorithm

The maximum volume alert algorithm is based on the ohserva-
tion that the satellite constellation which maximizes the volume of the
tetrahedron with vertices at the selected satellites (see Figure 2.1)
also approximately minimizes GDOP. The maximization of the
: volume is done in an approximate fashion. The steps outlined below
‘ will lead to a local rather thidn global maximum. This is done to

keep the amount of computation down. The procedure is as follows:

1't Satellite No. = i such that Ui U 20U, U
pgo, [k, Bl u
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where
j varies over the visible satellites.

Satellites No. 2, 3, and 4 selection: These satellites are chosen
as a group by iterating once through all of the remaining satellites. The

procedure is as follows.

A) Pick three visible satellites and compute the tetrahedral
volume (see Figure "Hexahedron of satellite and user'',
B) Pick another visible satellite, if there are no more, then
procedure is finished.
C) Compute the volume of the tetrahedrons with the new satel -
lite successively replacing satellites No. 2, 3, and 4.
Pick the configuration with the largest volume and label
those included satellites as the new No. 2, 3, and 4.
(Go to Step B).
This algorithm for finding the best satellites creates a monotonically
decreasing GDOP. This procedure converges to a local minimum and
it is certainly dependent on the order of the satellites chosen. In the
analysis section, the order taken is arbitrary so that the analysis repre-
sents a lower bound on the ability of the technique to choose a good con-
stellation (i.e., an upper bound for an achievable GDOP).
The volume computation is a simple calculation. The volume may ,
be computed using the scalar triple product, ; {

V==VI

= (1/16) I‘lz ey X )

‘o »-

{
{
{
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Figure 2.1.

Hexahedron of satellite and user.
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where

VI is the volume of the tetrahedron labeled I (See Figure 2.1)
alj is the vector from Satellite No. 1 to Satellite No. j.
] I indicates abhsolute value

With this algorithm at most twenty-two volume computations need be

done when eleven satellites are visible.

P ! Single Fix Algorithm

This section describes the candidate solution techniques for the

simultaneous non-linear equations which describe the user location.

The candidate algorithms presented here will be evaluated on the basis

of convergence, sensitivity to initial conditions, amount of computation
required, and accuracy in the presence of noisy inputs. The evaluation
techniques and results will be described in the next two sections. All

of the analysis in this and subsequent sections is for position plus user bias
fixes. The formulation for the position only fixes is contained in Appen-
dix 2 of Reference 16.

To compute a fix from satellite range data, measurements from
taree satellites (for a two-dimensional fix) or four satellites (for a three-
dimensional fix) are required. For this study it has been assumed that
all fixes are three dimensional. The basic measurement to be used for
position computation is the signal time-of-arrival (TOA). To use a TOA
in a navigation algorithm, the following pieces of information are required
for each measurement:

A) Position of transmitting satellite at time of signal transmission

B) Time of transmission of the received signal

C) Estimate of the deterministic time delays
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With this information, the user may use the TOA's from selected satel-
lites to determine its position. The equations to be solved can be devel-
oped as follows:

The measured time of arrival from satellite i, AT,, is given by

i'

A A
AT, = (1/e) || §-X || +T, +¢t +b+w

where

is the position of the ith satellite at the time of transmission

1% 1

is the user position
is the transmission time
is the deterministic delay

.

is the user bias (clock and electronic delay)

€ T~ 1

is the measurement error due to receiver error, random
atmospheric delays, ephemeris errors, satellite electronic
random delays, etc.

¢ is the speed of light

When a set of AT have been measured, a position fix can be
obtained. Two cases must be considered for collecting sets of data.
The two cases correspond to the single channel and four channel re-
ceiver configurations. In the first case there will be motion of the user
platform between measurements; in the second case, there is no motion.
The user motion in the first case will lead to some error unless an ex-
ternal velocity determination is available.

The set of measurements leads to the simultaneous non-linear
equations., The candidate solution techniques are presented below. They
are all iterative techniques.
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2.2.1 Newton-Raphson Method

The Newton-Raphson method is a well known procedure for
solving sets of simultaneous non-linear equations (17). The system

of equations to be solved here is:

£,X,b) = (1/e) || 8, -% | +b+ (T, - AT) = 0
£,&,b) = (1/c) [ S, -X | +b+ (T, - AT,) = 0
f,,b) = (1/c) || s, -% | +b+ (T, - AT,) = 0
f,8,0) = (1/e) | 8, -X | +b+ (T, - AT,) = 0

'

Note that if thére is a bias in the system such that all of the AT are
off by a fixed constant increment, this looks like a user bias b. The
user and system biases are inseparable and only the sum may be esti-

mated for navigational purposes. Lumping the two biases into b creates

no problem. The above set of equations will be used throughout this
section as the set of equations to be solved.
The Newton-Raphson method proceeds from one estimate to

the next according to

- -
xn+l “ xn+kn )

yn+l 3 y1'1 ¥ ll'n
znﬂ ‘= zn"‘mn i

= bn+p

bl'rb-l n

3 \
where

. y;» 2, are the user's position estimate at the end of the 1th

iteration and bi is the estimate of the user bias at the ith iteration.
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The increments kn' ln' m_, and p  are the solutions to the

following set of linear equations,

T F A
Vfl (x!l, Yno zno bn) kn
T
sz (xn. Yn, znl bn)
1 +
W n
Vf3 (Xno Yy B0 bn)
i
-Vf4 (xn' Yn' 2’ bn)__ Lmnd
N -
oD fl (x_, Yo' Zg Pp)
d
bb fz (x ’ ynl znl b )
P +
2. £, b) .
°b 3 » Yno s N
R f  (x z, b
B T e
P
fl (xn' o' %n’ bnT
f2 (xn’ Yn' Zp’ bn)
= 0

f3 (xn. Yor Zn bn)

£y g Yo 20 By |
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where

y denotes the gradient of the function evaluated at the point

indicated by the argument.

These equations can be solved by a Gaussian elimination scheme.
No matrix inversion is required. Other than add, subtract, multiply,
and divide, the only computational operation required is a square root.
In the GPS geometry, the Newton-Raphson method converges very well

with large initial condition errors.

2.2.2 Non-linear Gauss-Seidel Iteration

The basic Gauss-Seidel iteration philosophy is easily applied
to sets of non-linear equations. The simplicity of the iteration pro-
cedure makes this algorithm a candidate for use in the single-fix com-
putation.

The Gauss-Seidel approach to sets of simultaneous non-linear
equation is as follows:

Let fi(xi’ Xyr eees xn) a0 1=%, 2, .t.h., n be a set of si-
multaneous non-linear equations. During the k  iteration, the update

of x, comes from the ith equation by solving for x, in

£ x (k) (k) (k) (k-1) 5 (k-1)

§ TN v Ty S Tt T )

where the superscript (j) denotes the value of the variable from the j':h

iteration,
For this problem, the iteration is obtained from the set of equa-
tions for the navigation problem (see Section 3.1). The kth iteration

is given by:
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2 2 2.1/2
Xgy LUAT, =T -b )&} -y =¥ ) - (2,,-2 ))

: 2 2 2.1/2
Ve = Yo LUAT, -T, -b Je) -xo-x) -(s, -5 ,))

2
k ® T3 LUAT,-T, "’k-l)")2 o R LR "'k)z)l/Z

2 2 2.1/2
g " AT T - Vel -x) 4y =) +is -5))

=2
"

where Xt Vi’ and z ; are the ECI coordinates of the ith satellite being
used.

This technique is particularly simple since there are no simul-
taneous equations to solve. There is, however, some additional logic

to resolve the sign in the first three equations.

2.2.3 Successive Linearizations of Measurement Matrix

This method is similar to the one in (18) except tht the same
data will be used in the iteration instead of new data points. Because
of this, there will actually be two simultaneous iterations in progress.
Some efficient means for calculating initial conditions for the iteration
must be developed. The basic equations for this method are the linearized

perturbed measurement equations, i.e.,

¥, (X, b)

(i) _
AT'I‘ ¥ dx x=x

df, (X,b) " ¥, (X, b)
by y=y Oz z=z

Az

d£, (X, b)
y —— Ab

b b'b'n , 1i=1,2,3, 4
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where A'I‘T(i) refers to transit time of the satellite signal from satel-

lite i. This can be expressed as
[AT.] = F(X_, b )[AX Ab]T
T ! Tt .
Then
T -1
[AX, &b]” = F ()—(n' bn) [ATT]

where [AX, Ab] is the update vector.
Given the initial conditions of the iteration viz. [X , b ] and

F-l(}_(o. bo) the iteration proceeds as follows.

1. Compute vector [ATT] where

[ATT] = AT 'Ti’[‘”°) f S5 -X Hn+b]

i -n

2. Compute F
3. Compute new !

F-l i F-l
n n-1

4. Compute [Ag_rn ’ bu]

@21-F F‘:_ll) where I is the identity

- R |
[Agfn.Abn] s Fn [ATT]
5. Compute [l(n, bn]
[’—(n' bn] 5 D-(n-l' bn-l] +[A?-(n' Abn]

6. Check convergence criteria and end iteration or go to 1.
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2.3 Algorithm Analysis

Three areas of algorithm analysis are addressed in this section.
The first is the analysis of the two candidate alert algorithms. The cri-
teria for selection of one algorithm over the other include lower average
GDOP, computational complexity, and length of time to do the computa-
tion. The second area of analysis is the convergence of the numerical
techniques presented in Sections 2.2.1-2.2.3. The analysis will attempt
to determine regions of convergence for each algorithm. The third area

of analysis is the effect of noisy measurements on the single fix algorithms.

The possible effects are accuracy of the resulting fix and a possible change
in the convergence properties. The analysis techniques are described in

this section with the results in Section 2. 4.

2.3.1 Alert Algorithm Analysis

The relative measure of how accurately position may be deter-
mined using noisy measurements from different satellite constellations
is called GDOP (Geometric Dillution of Precision). This measure is
a static quantity which is valid only for a single set of measurements.

It represents an error multiplication factor relating the uncertzinty in
the measured TOA to the resulting least squares position determination.
A complete derivation of GDOP can be found in Reference (6). The fol-
lowing formula for computing GDOP is derived in Reference (6).

GDOP = (Trace (FIF) })!/2

where

F is the matrix of partial derivatives (see Section 2.2.3 above)
evaluated at the user's actual location.
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The analysis of the alert algorithms uses the satellites in their nominal
orbits.

To help determine which alert algorithm is to be used, an average
GDOP value over a grid will be computed using each alert algorithm.
The grid selected takes advantage of the symmetries of the problem, so
that only one-sixth of the Earth is considered. The grid“l is every 10°
in latitude from the equator to the North Pole, every 10° in longitude for
a total of 1200, and in time, every 15 minutes for one and a half hours.
The average value will be computed for the GDE alert and the Max. Vol-
ume alert. The optimum achievable GDOP for a given constellation can

be computed through an exhaustive search.

2.3.2 Single Fix Convergence Analysis

Each of the single-fix algorithm solution techniques has been pro-
grammed for checkout purposes. To check the convergence of the algo-
rithms, several sets of initial conditions were used with varying error
magnitudes. The convergence checks were also made over varying
geometric conditions, i.e., different user locations and different times

to include the changing satellite positions.

2.3.3 Effects of Noisy Measurements

Since the measurements obtained by any GPS receiver are noisy,
that is the measured time is not an exact indication of the signal transit
time, the single-fix algorithms should be checked for accuracy and con-
vergence in the presence of noisc. For the analysis of the single-fix

algorithm, the measurement noise will be modelled as a Gaussian

*The grid consists of 654 points.
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distributed random variable added to the simulated signal transit time.
The noise can be assumed to be zero mean with variance specified by
the phase III specification (6). The theoretical lower limit on the navi-
gational error variance is the measurement noise variance times the
GDOP factor squared. This limit will be reached if the numerical algo-
rithms do not introduce errors which are comparable in magnitude to
this basic limitation.

To investigate the effects of noisy measurements, a Monte Carlo
type checkout will be done. The procedure will be to select a user loca-
tion, then simulate the measureables. The simulated measurables are

given by

§i-§” +b +w

where

§i is the simulated actual location of the ith satellite

X is the simulated actual location of the user

b is the simulated actual bias

w is a random number which is Gaussian distributed with zero
mean and variance equal to phase III specification for system

error variance. w is generated by subroutine GAUSS.

At each user location, about a hundred fixes wiil be made with

simulated measurables as above. The error will then be computed as:

1 0 n,1/72
Qs * (N ,g X -x

51




where

N is the number of fixes using simulated noisy data
X is the simulated actual user location
ii is the computed fix using the ith set of noise measurables

tRMS is the root mean square error

The variance of the noise will also be increased to account for
inaccuracies in the receiver measurement. Good single fix algorithms
should not be sensitive to the magnitude of the noise as long as the mag-

nitude is not unreasonable. Results of this analysis are in section 2. 4.

2.4 Results of the Analyses

In this section, the numerical results of the analyses described
in Sections 2.3.1-2,3.3. All of the computer programs to obtain the

numerical results are given in Appendix 1 of Reference (16).

2.4.1 Alert Algorithm Results

The results of computing the average GDOP using each of the
alert algorithms with a 5° elevation horizon described in Section 2. 1
is given in Table 2.4.1. The average was taken over the space-time
grid described in Section 2.3. 1.

Table 2.4.1 Alert Algorithm Comparison Results

Algorithm | GDE Proposal Alg “"‘v“t“:‘:“ Optimum Configuration
Average *
e 47.6 2.84 2.73
- Max »
g T 3088 1.67 i)

*Excluding singular points of algorithm
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¥ A more detailed look at the GDOP analysis is presented in the

histograms of Figures 2.2 - 2.4. Using the grid desc rib.‘ed.,-in Section

2.3.1, Figure 2.2 presents a histogram of the GDOP devin‘fi'ons of the

GDE proposal alert algorithm constellation selection from the optimal

constellation selected by exhaustive enumeration. Figure 2.3 does the

same for the maximum volume algorithm. The distribution of the GDOP
for the optimally selected constellations is presented in Figure 2.4. The

’ histograms show that the GDE proposal algorithm selects poor constel-

lations (i.e., GDOP deviation > 7) in what is felt to be an unacceptably »

large percentage of the cases. In addition, the GDE proposal algorithm

produced some constellations for which GDOP did not exist, (i.e.,

GDOP = =»). This situation may result since the satellites are in nominal

orbits with perfect symmetry. Although in practice this condition prob-

ably would not arise, its possibility is a shortcoming of the algorithm.

’ To compare the computation time of the Maximum Volume algo-
rithm with the optimum selection based on volume maximization, the
number of volume computations should be noted. For the Maximum
Volume algorithm the number is 3%(N - 4) + 1 where N is the total
number of visible satellites. For the optimum exhaustive enumeration,
the number can be computed from the binomial coefficient. Table 2.4.2
compares the numbers for the minimum number of satellites visible, 6,

% the typical values, 8 and 9, and the maximum number 11. The amount
of logic and hence the amount of computation per satellite set required for

the two mechanizations is not significantly different.

53




% of Grid Test Points

50

10

i .

R

= — 1

-

T...f

.5 1.0 1.52.02.5 3.03.5 4.0 4.55.05.5 6.06.5 7.0 27.0

4 GDOP

Figure 2.2 Histogram of GDOP Deviations for GDE Proposal Algorithm.

54




A ARSI S PR, P 2

% of Grid Test Points

20 ==

10 =T~

.4

.

i~
1.0 1.21.4 1.61.82.0 2.22.

4 GooP

Figure 2.3 Histogram of GDOP Deviations for Maximum Volume Algorithm,

5 A MM i S .l N b NS




% of Grid Test Points

50

40

20

10

g

{ { | 1 | o

1 1217 161 Zo22 Za2ls Zs3loaslz 343
GDOP

Figure 2.4 Histogram of Optimal GDOP Distribution.

L 1)

84

o al2




|
’ Table 2.4.2 Volume Computations Comparison
No. of Visible Vitume Comgti Volume Computations
Satellites Roymara: ¥ alomie Optimum
— Algorithm

)
7 15
13 70
16 126
’ 11 22 330

2.4.2 Convergence Analysis Results

The convergence of the three single fix algorithms was checked
for several user locations and initial conditions. Early in the analysis
it was apparent that the non-linear Gauss-Seidel iteration was not well
suited for the single fix algorithm. The convergence was found to be
very sensitive to initial conditions, so the method was not considered
for further analyses.

The computer program written to run convergence test cases
is called ITERTEST. The program is documented in Appendix 1 of
Reference (16). This is the same program which will be used to study
the effects of noisy measurements. The convergence checks are made
by setting the noise variance to zero and the number of iterations to one.

Table 2. 4.3, Convergence Analysis Sample Results, contains
some sample results. The initial conditions for the iterations were

o B DRI 5 e, e

g chosen to correspond to an octant of uncertainty. The center of the
Earth was chosen in an attempt to arrive at a universally acceptable
starting point.

i
F
3!
2
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Table 2.4.3 Convergence Analysis Sample Results.

Iteration Initial Converged?
Run ti;_:: L::;tio)n Lca::mi.ir:: (:':; o NP.. Meas, Matri.x

. g. Center of Earth eration Iteration

Indication Yes | No Yes | No
1 | 45°N 160°W | Center of Earth X X
2 | 45°N 160°W 0°N 180°w X X
3 | 45°N 160°W 90°N X X
4 | 45°N 160°W 0°N 90°w X X
5 | 32°N 120°W |Center of Earth | X X
6 |32°N 120°W 90°N ' X
7 | 32°N 120°W 0°N 120°W X X
8 |32°N 120°W 0°N 90°w | X X
9 | 89° 20°W |Center of Earth | X X
10 {89°s 20°w 90°s X >'s
11 |89° 20°w °N o°w | x X
12 | 89°% 20°w 0°N__90°W X X

2.4.3 Noisy Measurement Analysis Results

The Newton-Raphson iteration and the successive linearization
iteration methods were analyzed with noisy inputs. The analysis was
done with main program ITERTEST, Results are presented in Table
2.4.4, Measurement Noise Analysis Sample Runs. Initial conditions
were chosen to correspond to cases where the iterations both converged.

If there is no error or negligible error introduced, the RMS
errors will be GDOP times the input noise sigma. For the purpose of
this analysis, only one hundred iterations were done to save computer
costs. The true error is within twenty-five percent of the indicated
error at a ninety percent confidence level when one hundred samples

are used. ()(z test)
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2.5

Conclusions and Recommendations.

The following conclusions and recommendations have been drawn

as a result of this portion of the study.

A.

The GDE proposal alert algorithm is not acceptable.

it is recommended that an algorithm based on volume
maximixation be used. Depending on how much time can
be allocated to this task either the approximate or the
exhaustive algorithm should be used.

The convergence of the iterative algorithm is not af-
fected by noisy inputs. Furthermore, they appear to
converge with a close approximation to the accuracy of
a least squares solution.

If it is desirable to have a single-fix algorithm which
converges from an initial condition of an octant of the
Earth uncertainty, the successive linearizations of the
measurement matrix method (sec. 2.2. 3) should be used

with initial conditions of the center of the Earth.
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Section 3. - FILTER DEVELOPMENT

3.0 Introduction

The purpose of this section is to present the results of the filter
algorithm development task of the study. There were two objectives in
this task, The first was to establish the optimum filter for the NAVSTAR/
GPS receiver based on the models in Section 1. The second objective
was to outline the form of several candidate sub-optimum filters. The
details of the sub-optimum filters are not established until the end of
the covariance analysis section. .

The optimum filter will include all of the significant error sources
identified in the modeling section of this report. This will lead to a filter
with a very large number of states, in fact too large to be considered for
actual implementation in an operational receiver. The purpose of estab-
lishing this optimum filter is to set a bound on the obtainable accuracy.

In addition, this optimum filter will become the reference system for use
in the covariance analysis of the next section.

Several sub-optimum filters will be presented which vary greatly
in both complexity and computational burden. Each of the filters is re-
cursive in nature to take advantage of the large amount of data available.
For the purpose of this section, only the form of the various filters can
be considered. Determination of the state vectors can only be done through
sensitivity analysis. Thus an evaluation of both accuracy and computational
burden will be presented in a subsequent section.

The problem of actual operational mechanization for a given filter
will not be discussed here. By this it is meant that for the purpose of
this report, for example, no distinction will be made between a standard
or square root formulation for the Kalman filter. No mention will be made
of sequential vs. batch processing except in the cases where the nature of

the filter demands one type or the other.
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3.1 Optimum Filter/RefeimgLSystem

This section will describe in detail the optimum filter. The de-

scription will include a summary of the Kalman filter equations and a

complete description of the models used. The model description is a compen-

dium of the models in Section 1. It serves a definite purpose of its own
since this is the first time that all of the models are brought together and
the interrelationships shown. For an understanding of the individual mod-
els, it is required to consult Section 1.

The filters to be described in this and following sections are bas-
ed on linearized equations. The state equations for the filters can be ex-
pressed by linear relationships. The measurements are, however, highly
nonlinear functions of both time and user location. Thus in order to apply
the results from linear system theory to the estimation problem at hand,
.the measurement equations must be linearized about some point. In an
actual operational system, this point can only be the current best estimate
of the user location. The procedure for the filter implementation is as
follows: .

1) Using the current best estimate of the state (either from init-

ial conditions or the value extrapolated from the previous estimate)

and the nonlinear measurement equations, compute the expected

values of the measureables.

2 = RO ey ¥

2) Difference this expected measureable from the actual measured
value. This resulting value is the measureable for the linearized

(or error state) equation
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3) Use the difference computed above as the measurement in the
linearized filter equations to estimate the error states, i.e. the

difference between the true values'and the current estimate.

2 = Ky Az,

4) Add the estimated error states to the current estimate, x® ,to

-k ’
produce a new best estimate. This is sometimes referred to as

resetting the state.

"~ 8 e " »
= O palat &y
The linear systems descriptions which follow are the system

equations for the errors of the best estimate. This system is callad

the error system.

3.1.1 Optimum Filter Equations [19]

" The optimum filter equations are optimum in the sense that they
provide the minimum variance estimate for a linear system. The opti-
mum (or Kalman) filter equations can be written for either continuous or
d.screte systems. The nature of the data from the NAVSTAR/GPS re-

ceiver dictates a discrete-time measurement and estimate update. On

the other hand, the system has a continuous time system description from

which a transition matrix may be computed. The system model will be
presented as a continuous system for purposes of exposition. The filter
equations will be presented in this and subsequent sections as discrete
time systems where the transition matrices 2re computed using the con-
tinuous time representation given.

The linearized differential equation for the reference system is



identical to the error system given by

X = Fx + Gu (3.1)

where

is the error system state vector

is the reference system matrix

Q m Ix

is the reference system input distribution

e

is a vector of independent gaussian white noise
inputs each with unity PSD,
The vector x has dimension n and u has dimension m. The

matrices F and G are dimensioned conformably. The linearized ob-

servation process is

(3.2)

A

2 = Hixg + y R

where

Y

zZ, is the vector of predicted observations
2z is the vector of actual observations
A% is the vector of observations for the error system
Hkil the error system measurement matrix
v k“ a vector of independent gaussian white noise
measurement errors.
In addition 2z and y have dimension r with H dimensioned

conformably. The usual assumptions on the random processes are made

and given by E[u(t)] = Efyt)] = 0

E[\_\(t)gT(f)] = I8(t - 7)
E[x(t)x'r(f)] = R(t)b(t-T) (3.3)
Efut)y (1] = 0
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; E[zt.(to)g_T(t)] = E[g(to)!T(t)] =0 t2t

T
= 3
E[:_t_(to)gg (to)] P(to) 0.
The state transition matrix ¢ for the constant coefficient refer -
ence system of Eq. (1) is defined by
d(t) = Fo(t) (3.4)

or solving for the time invariant case

©(t) = exp (Ft) (3.5)

With these definitions, the Kalman filter equations for the minimum
variance estimate i of the error system state vector x at the kth

measurement time are

i - R - R X

and

i T (3. 6b)
P = O P xat %

¢ pl’t}{kr[ukpkl": ”‘k]-l (3. 6¢)

» ﬁ -
T T
: P, = [1-KH] rfk[-xkukl +K R K (3. 6d)
bt T T
Q = { eabe-rccTeTat-nar (3. 6e)
‘0

g
¥
2
g

where At is the time between measurements k and k - 1.

3.1.2 Reference System Model

At this point of the report, the complete state vector and measure-

ment equations are defined only for the optimum filter/reference system.
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The description to be presented here will clarify the relationships of
the various models presented in Section 1.

Table 3.1 contains the reference system states used in the optimum
filter. Only four satellites are contained in the state vector at any point in
time. This has been done to reduce computer costs. The four satellites
contained in the state vector are those which are currently being tracked
by the receiver. As the set of satellite changes, appropriate changes
must be made to the reference system/optimum filter covariance matrix.
This is analytically justified since covariance values associated with un-
tracked satellites do not affect other system states either in the time
pPropagation or in the update. The only case where a problem would arise
is if a satellite which is being tracked is replaced for a short time and
then reacquired. Should this situation arise, the state vector size will
have to be increased unless it is determined that ignoring the correlation
introduces negligible error.

The reference system F matrix and G matrix [see Eq. (3.1)] are
a sparse matrices. Because of this, displaying only the non-zero ele-
ments is more enlightening., The non-zero elements of F are given in
Table 3.2. In Table 3.2, the parameters in the value column are taken
from Section 1. The values are listed below for the typical models given
in Section 1. The values in Table 3.2, are parameterized for ease in
changing when new information is available. The definitions and values

are as follows:

3! 1/6
a = “"z/“’l)

W = w (cnz)”2
a 1

3

B ainlty m+M/zo

M = gain at w, in dB (for crystal clocks ® -220 [24])
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4
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&
¥

No.

W 0 N9 0 W N -

N N N N s e e e b e s b e e
W NV = O W ® = O 0N d W N = O

24-29
30-35
36-41
42
43

Symbol
Ax

Ay
Az

0000000
N oo v e W N -

> =
._:-!

‘*??u
=g ™

-3
@

N T

-3
e

XgM1
EM2

Table 3.1

Reference System State Vector

Definition
position error component x in ECI
position error component y in ECI
position error component z in ECI
velocity error component x in ECI
velocity error component y in ECI
velocity error component z in ECI
acceleration error component x in ECI
acceleration error component y in ECI

acceleration error component z in ECI

Noise model for user clock

frequency offset for user clock
aging coefficient for user clock time error

Time error

Tropospheric delay uncertainty

position error component x in ECI of tracked satellite 1
position error component - in ECI of tracked satellite 1
position err.or component z in ECI of tracked satellite 1
Time error of tracked sateilite |

Time rate error of tracked satellite 1

Ionospheric residual error along LOS to satellite 1
same as 18-23 for tracked satellite 2

same as 18-23 for track«d satellite 3

same as 18-23 for tracked satellite 4

EM-log random walk error

EM-log G-Markov error
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Table 3.1 (cont'd)

Reference System State Vector

No. Symbol Definition

44 chl GC random walk error

45 xGCz GC G-Markov Error

46 xoll OMEGA bias for received station 1

47. xolz OMEGA G-Markov error for received station 1

48 x 1

49 xol3 } OMEGA periodic error for received station 1
04

50-53 same as 46-49 for received OMEGA 2

54-57 same as 46-49 for received OMEGA 3

58-61 same as 46-49 for received OMEGA 4
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Table 3.2
Reference System F-matrix

Row Col Valv.ul.I Units
1 4 1.
) 2 5 i
3 6 1.
4 7 1.
5 8 X
' 6 9 -k
10 10 -w, aec-l
11 10 al@- 1w, u.ec-l
) 11 11 -azw, aec.l
12 10 ‘ az(a- l)wa sec-l
12 11 a3(a- l)wa sec.l
12 12 -w‘w‘ oor
’ 13 10 () - wy)/a’® sec
13 11 (w, - mo)/mz sec”
: 13 12 (wy - W)/ v
E 13 13 -w, sec™!
14 15 i,
16 10 Bla’
: 16 11 Bla’
: 16 12 B/a
§ .16 13 B
; 16 4 1.
% ’ 21 22 1. o
; 23 23 -1 /1, sec
[ 27 28 1.
| 29 29 -1/, sec |
’ 33 34 1.

@
See text for variable definitions.
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Row
35
39
4]
43
45
47
48
49
51
52
53
55
56
57
59
60
61

Table 3. 2 (cont'd)

Reference System F-matrix

Col
35
40
41
43
45
47
49
48
51
52
52
55
57
56
59
61
60

*
Value

-1./7

"l' /T-
1

-1. /TEM

-l. /'GC

-lc /fOM
1.

~“oM
‘lo /70
l.
~“om
-lo /fo
1.

M

M

~WoMm
= i /fo

1.

M

oM

*
See text for variable definitions.
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A

c1nase

25
&
&
kS
&
%
Fs
4
¢
g

w, = 43/1'3

€
"

60n2/(m- 1’2)

E
"

w/2T 1 bn 2)
fz, 73 are breakpoints of the Allan variance curve

.5 sec (typical crystal clock [24])

=Y
!

80 sec (typical crystal clock [24])

. )
"

50000 sec (typical crystal clock [24])

-
[}

1. 17 hr.

-2
"

T = ,15 hr.

EM
f .
GC = 23 min.
= ] :
TOM hr
w = (27 /12) b
oM

In the reference system state vector, states 42 through 61 will
be used only when the Gyrocompass, EM-log, and OMEGA are being
measured. In the bulk of the NAVSTAR /GPS analysis, only the first
forty-one states will be propagated. This again is done to conserve

computer costs.
To complete specification of equation (3.1), the matrix G must

be defined. However, certain of the models are specified only in terms
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of covariance propagation. For these models it is easier to define the
product G GT. The non-zero elements of G G'r are listed in Table 3. 3.
To get a particular formulation of Eq. (3.1), any of the non-unique square
roots of G GT may be used. The easiest determined square root is prob-
ably the one obtained using a Cholesky decomposition [20] Some of the
values in Table 3.4 are in terms of parameters. Some of them are de-

fined above, the remainder are as follows:

O ., 0. .., 0 i=x, y, 2 are PSD values for random
posi’ veli acci

walk models

c is the PSD for the satellite clock fractional frequency
CLK -11
error ~ 10
cri i=1, 2, 3, 4 is the prediction residual for the ionospheric

error

2 0,2
Opi = Ocsc | E +(18") ]

Ei is the elevation angle to the i';h satellite

0 is the RMS correction error (¥ 8 - 17 ft)[23]

Ri i=1, 2, 3, 4 ionospheric pierce points of ith line of

sight vector
D ionospheric distance constant ~ 2500 km

The model for the correlated ionospheric error is discussed
more fully in Appendix

The final specification of the reference system is the measure-
ment equation. This equation relates the state vector elements to the

measured quantities or measurables. In terms of the state vector of
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Table 3.3

id T

) Reference System G G

(Upper Triangle of Symmetric Matrix)

*
Row Col Value Units
)
1 1 Uz me'terzlsec
pos x
2 2 cz meterz/sec
pos y
N 3 3 Uz meterz/sec
pos z
4 4 Gz meterz/sec3
vel x
5 5 Oz meterz/sec3
vel y
’ 6 6 az meter? /sec3
vel z
7 7 02 meterz/secs
acc x
8 8 cz mete.-rz/scec5
» accy
9 9 2 met:v.erz/sec5
acc z
10 10 waz(a <2t .
[ 10 11 w‘za(a - 1)2 -
10 12 wazaz(a i P
3 -2
10 13 (- 1w (W, - w)/a sec
A | 0
£ ~
10 16 (& - l)m‘ﬂ/u3 sec 4
11 11 wazaz(a - 1)z e
11 12 w 2a3(a - 1)2 et
B a
11 13 W (- 1)(w -w )/m2 I
: a ¥ e c
11 16 w‘(a - l)ﬁ/dz ; wc'l
¥ 12 12 w‘z(a - l)za‘ lec-z

l"'See text for variable definitions.
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Row

12

12

13

13

16

21

23

23

23

23

27

29

29

29

33

35

35

39

41

Col
13

16

13

16

16

21

23

29

35

41

27

29

35

41

33

35

41

39
41

42

o
RIGRZ

Table 3. 3 (cont'd)

T

Reference System G G

%
Value

(Upper Triangle of Symmetric Matrix)

w (@- W - w) /e

@ (@ - 1)f/a

(@, - “6)2/0?

(@ - 0)ﬁ/m6
B /o
OCLKZ

2 .
. Wl

¢ Z‘exp(-lR.l -

(o SN < § ® U - i
r1%r3 " 2" exp(-[R,

o o
R1 R4
2
%cLk
2
%z M7,
(o
rR2R3
Or2%Rs " 2 exp(-[R, -
2
%cLk
2. 3
c Ll
Ky Ty

%cLk?

2
e WY

. 03722

Yes temt lmre cariable definitions.
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Rzl /D)/T,

1:.31/13)/1:’i

2 exp(-|R, - R |/D)/T,

¢ 2 exp(-lRZ - R3| /D)/‘Ti

R4|/D)/'ri

%23% 4 2 ¢ex1>(-|R3-R4|/D)/fi

secz/sec
secZ/sec
secZ/sec
seczlsec
seczlsec
secz/sec
secz/sec
seczlsec
secZ/sec
aecz/sec
seczlsec
secZ/sec
secz/sec
seczlsec

fpszlsec




e

e

Row

43
44
.45
47
51
55

59

(Upper Triangle of Symmetric Matrix)

Col
43
44
45
47
51
55

59

Table 3.3 (cont'd)

T

Reference System G G

6.6 X 10°

Value*

.282 % 10~

1.775 x 10°4

E3
See text for variable definitions,

75

. 00277

. 00277

. 00277

. 00277

4

5

Units
fpsZ/sec
2
deg /sec
degz/sec
g 2
centicycle /sec
: 2
centicycle /sec
: 2
centicycle /sec

centicyclezlsec




error states as presented here, the measured quantity is the difference
between the actual measured quantity and the expected measurable based
on current estimates. This means that the measurement equation can
be linearized about the current estimate. The non-zero elements of the
measurement matrix H are presented in Table 3.4. The measurement
matrix elements described there are for the most general case being
considered where there are thirteen measured quantities. Rows 1-4
are concerned with time-of-arrival measurements, rows 5-8 are con-
cerned with doppler measurements, row 9 is concerned with EM-log
measurements, row 10 is concerned with gyrocompass measurements,
rows 11-13 are concerned with OMEGA station pair measurements.
Any subset of these measurements may be used in a specific scenario.
For most cases only the first four or eight measurables will be considered.
A more detailed explanation of the measurement equations follows the
symbol defintions.

The measurement matrix is a truly time varying matrix which
is also dependent on the scenario. r‘:,.:’this r@son most of the elements
are defined in terms of variables. The following are the definitions of

the variables from Table 3. 4 and the equations following the definitions.

u;, u;, u; i=1, 2, 3, 4 gre the x, y, and z components

of the unit vector from the user to the it'h tracked satellite

vi \.1i &
i Jgid N E g 2
kJ" —l-. _l.-p e i=1,2,3, 4 j=x,v, z
P P
}Dl = distance from user to the ith tracked satellite
v = jth component of the relative velocity of the user

with respect to the ith tracked satellite
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Table 3. 4

Reference System Measurement Matrix

Row Col _ Value*
1,1
1 1 o
ux(c)
11
2 £3
! uy(c)
1 3 ul(l)
Z C
1 16 1.
&
1 17 L,
11
1 18 13
ux(c)
11
1 19 =
uy(c)
11
1 20 2
uz(c)
1 21 1.
1 23 1.
2,1
1 EA
2 u ()
2,1
2 -
. u (o)
21
3 =
2 u (2
2 16 B

*®
See text for variable definitions,
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Units

sec/meter

sec/meter

sec/meter

sec/meter

sec/meter

sec/meter

sec/meter

sec/meter

sec/meter




Row

Reference System Measurement Matrix

Col

17

24

25

26

27

29

16

17 ,

30

31

32

Table 3.4 (cont'd)

*Soe text for variable definitions.
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*
Value

1.

o )

X cC

gL
yc

o

X cC

ae)
yc

u3(-l-)
Z C

w2

xXc

31
uy(c)

us('l')

zZC

Units

sec/meter

sec/meter

sec/meter

sec/meter

sec/meter

sec/meter

sec/meter

sec/meter

sec/meter



Table 3. 4 (cont'd)

Reference System Measurement Matrix

*
Row Col Value Units
3 33 1.
3 35 1.
4 1 u‘(l) sec/meter
x c
4 2 u‘(l) sec/meter
yc
4 3 u‘(l) sec/meter
zc
4 16 l.
4 17 1.
4 36 u4(l) sec/meter
x c
4 37 u4(l) sec/meter
S ¥ =
: 4 38 u‘(l) sec/meter
i - z'c
L
4 39 1.
‘g 4 41 1.
: 5 1 ki counts /meter
: 1
5 2 kY counts /meter

*See text for variable definitions.
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Table 3. 4 (cont'd)

Reference System Measurement Matrix

*
Row Col Value Units
5 3 k; counts /meter
1 1
5 4 u o w_dt(—) counts /(meter /sec)
x T e
1 1
5 5 u * w_dt=) counts /(meter /sec)
y G
1 1
5 6 u * w.,.dt(=) counts /(meter /sec)
: z o
3
5 10 dt W, B/a counts/sec
2
5 11 dt wTﬂ /a counts/sec
5 12 dt wTB /et counts/sec
5 13 dt wTﬁ counts/sec
5 14 dt wT counts /sec
5 22 -dt wT counts/sec
2
6 1 ' kx counts /meter
2
6 2 ky counts /meter
2
6 3 kz counts /meter

.See text for variable definitions.
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‘ Table 3. 4 (cont'd)
(L

Reference System Measurement Matrix

Row Col Value* Units
2 1
6 4 u_ wdt (:) counts /(meter/sec)
2 1
6 5 uy « wdt (? counts /(meter /sec)
2 1
6 6 u ¢ wdt (:) counts /(meter /sec)
- 3
\ 6 V10 dt w.rﬁ /a counts/sec
2
6 11 dt m,rﬁ /o counts/sec
} 6 12 dt wT B/a counts/sec
: 6 13 dt wTB counts/sec
é 6 14 dt wT counts/sec
3‘ 6 28 -dt W, counts/sec
:
B 3
* 7 1 kx counts /meter
£ 3
ii 7 2 kY counts /meter
. ; ‘
7 3 kz counts /meter
3 1
7 4 u_ o+ W, dt (=) counts /(meter/sec)
x T c
3 1
7 5 u” * W, dt (=) counts /(meter /sec)
. y T c




Table 3. 4 (cont'd)

Reference System Measurement Matrix

ke
Row Col Value Units
7 6 u3 ¢ w_dt (l) counts/sec
S 4 c
3
> 10 dt w,rﬁ /e counts/sec
2
7 11 dt w,rﬁ /e counts/sec
7 12 dt wTB /e counts/sec
¥ ; 13 dt w,rﬁ counts/sec
7T 14 dt NT counts /sec
T 34 -dt w,r counts/sec
4
8 1 kx counts /meter
4
8 2 ky counts /meter
4
8 3 kz counts /meter
4 1
8 4 u * W, at (=) counts/(meter /sec)
x T c
4 1
8 5 u ¢ W, dt (=) counts /(meter /sec)
x T c
4 1
8 6 u * W, dt (—) counts /(meter/sec)
z T c
8 10 dt NT B/ﬁa counts /sec

l.'Seo text for variable definition,
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Table 3.4 (cont'd)

' Reference System Measurement Matrix
x*
Row Col Value Units
8 » 11 dt wTﬁ/uz counts /sec
i
8 12 dt wTﬁ /ot counts/sec
' 8 13 dt wTﬁ counts/sec
8 14 dt W counts/sec
' 8 40 -dt W, counts/sec
9 4 Hx
§
5 H
! b /
9 6 H
z
E )
: 9 42 1.
; +
4 10 4 H‘/Ivl sec/meter
10 5 Hy /vl sec/meter
+
10 6 H.llvl sec/meter
’
10 44 1.

*
See text for variable definition.
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Row

10

11

11

11

11

11

11

11

11

11

12

12

12

12

Reference System Measurement Matrix

Col

45

46

47

50

51

52

46

Table 3. 4 (cont'd)

*
See text for variable definition,
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*
Value

1.

1.

Units

rneter"l
meter-l

-1
meter

meter ;
meter .

meter.l




i
'. Table 3.4 (cont'd)
' Reference System Measurement Matrix
*®
Row Col Value Units
12 47 1.
i
12 48 15
. 12 54 - la
3 lz 55 - 1.
L]
12 56 -1,
13 1 ot meters” |
’
13 2 g3, meters
13 3 333 meters
)
13 54 1.
£ » 13 55 1.
g 13 56 1.
: 13 58 -1,
13 59 o5 lc
)
13 60 -1,

*
See text for variable definition.
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Pl = range rate from the satellite to the user
dt is the Doppler integration time
W, is the satellite transmitter frequency

T
c is the speed of light

Hx’ Hy, Hz are the x, y, and z components in ECI of the vector

along the heading of the user
+ .+ .+ .
Hx’ Hy, I-Iz are the x, y, and z components in ECI of the vector
in the plane tangent to the Earth at the user's location
and orthogonal to the heading vector

lv| is the magnitude of the user velocity W, r.t. the Earth

g i=1,2,3 ; j=1, 2, 3 are elements owahere

i
r ey
B'PA op
3L A
1 -1 0 0
ot r e E Be ap gl
J‘-l- o 9. . oX 9x dy 2=
0 0 1 -1
Y Yol la uo o
oL PR Bx dy az_J
20, 20,
£

with the partial derivatives evaluated at the present user location

and from [7]

acpi At Roi -inLR cos Li cou(XR - Xi) - cos LR sin L,
oL C a - UiZ)I/Z
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P RS T SRS R (TR A

iﬁ e iy Rof cos LR cos Li sin (XR - ki)
A C (- Uiz)l/z
Ro = radius of the Earth

Lpo AR are latitude and longitude resp. of the user

Li’ )‘i i=A, B, C, D are the latitude and longitude resp. of
the OMEGA transmitter

Ui = sin LR sin Li + cos L_ cos Li (cos AR - cos ki)

R

f is the frequency

gTL. % ’ ba—l; ’ % ’ 'g% ’ ‘g—: can be computed from the relations

for an ellipsoid of revolution.

i ()
cos LR sin (Wt + AR)

= (1- (2 sin'2 LR)”2

x = R

w
cos LR cos (Wt + AR)

e (L ¢2 a'mz LR)IIZ

y = R

(l-(z)sinL
2

R

2z = R 1/2

i ¢ A linzLR)

~

= 1/298.25
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The modeling section presents the error model dynamics for
each of the reference system states. The following will show how each
of the measurables depends on these system states. The measurables
are of five different types. They are: (1) TOA (time-of-arrival), (2) dop-
pler, (3) EM-log derived velocity, (4) gyrocompass heading, and (5) OMEGA
phase errors. The equation for each measurable typc is presented be-
low with a brief explanation.

The measurement equations presented are all linearized about
a nominal or estimated value. Thus the equations presented are the mea-
surement equations of the deviations of each quantity from its expected
or computed value.

(1) TOA Measurements. (Rows 1-4) The equation relating the
difference in the measured TOA and the predicted TOA (i. e., ATOA) to

the error state variable is given by

NG e
ATOA, = —=Ax + YL Ay + = Bz +c +7T
c c c 7 T
i i i
ux i iy uz i i i
+ 28" + XL As' + 28 + T 4T 40OV
c x c 1 i

where i indicates the quantities are related to the ith tracked satellite
and ¢!vil is the receiver measurement error (i =1, 2, 3, 4).

It can be seen from this equation that the TOA error is a function of
both time and position error states of the user and the transmitting satel -
lite. Additionally it is a function of the atmospheric errors along the
transmission path.

(2) Doppler Measurements. (Rows 5-8) The equation relating the dif-
ference between predicted and measured doppler counts (frequency integrated

over dt) to the error state variables car. be derived ftom the relation given in

Section 1.




’
i i wT e i
'” AN = Adth-thw,r--c—thp +%.0p"2
’
The doppler count error comes from three basic sources, the
dt error which is a function of user clock parameters, the wT error
" which is a function of satellite clock parameters, and the P error which
is a function of user position and velocity errors. Each of these can be
identified in terms of the reference system states.
The error in the integration time is equal to first order to the
$ user clock rate error times the nominal integration time dt.

a31‘!2 a 3

&dt = dt (Lc +Lc2+2c +ﬁc4+c5>

Similarly the transmitted frequency error is to first order equal

to the satellite clock rate error times the nominal transmitted frequency.
i
w = w
a T 4

The range rate error is given in Section 1 in terms of user position

and velocity errors. Using the notation above

c i i i . : ;
ap = w,rdt (kxAx + kyAY + kzéz> - uxAx - uyAy - uzAz

1 .
°DOP Vz is a truncation
error since only full counts are measured. The full equation is

The measurement error represented by

b 8 8 8 Sdtw rh
AN = dtw,r( c, + c +ac3+ﬂc4+c5) dt T,

+ -ldt(u 8x +u_ Ay +u A'z)-kiéx-kiéy
c x y z x Yy

i

i
~k, 82+ 0,0V,
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{3) EM log velocity, (Row 9) The EM log velocity is measured along

the ships heading axis. The difference between the predicted and mea-
sured velocity is dependent upon the velocity error projected on the ships
heading vector and the EM log errors. The EM log error measurement
is given in terms of the reference system states:

< . . . o
As HxAx + HyAy + Hz& +xemr P XMz t Vs

(4) Gyrocompass derived heading. (Row 1¢) The difference between

the gyrocompass derived heading and the predicted'velocity vector (in the
absence of ocean currents) can be expressed in terms of the reference
system error states. Figure 1 shows the relationship between the pre-
dicted velocity unit vector and the measured heading. To first order the

heading error can be represented by

.+ 8% + Al + Az
= o
AH Hx o + Hy ﬁv + Hz y o txcar t Xgc2 t 9V,

= Measured Heading - Predicted Heading = Hp - Hm

Figure 3.1
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F’i (5) OMEGA phase errors. (Rows 11<13) The OMEGA phase dif-

) ference between the predicted and measured values are a function of the
OMEGA phase errors and the user location error states.
3¢ LY

d
KJ % KJ TR SR
Mp pre A 4 —— A + o e
) KJ e TNy TR 8z + x5 - xq, + x4, - %0,

where

~
"

A with J

1l
&
Q

and

A
"

C with J

n
o

The rernaining definition needed for the filter relations of (3.6) is

the R matrix. This is the measurement noise covariance matrix. The

’ purpose of this measurement matrix is to simulate receiver measure-
ment errors including truncation effects. Table V gives the non-zero

elements of R. As is apparent, all of the measurement errors are un-

ment errors. . As above in the measurement matrix definition, it should

\

b

%

7

§ ) correlated with the exception of the OMEGA phase difference measure-
f be noted here that not all of the measurement states and hence not all

of the measurcment error covariance terms are required in each simula-

’ tion. Typical values for the parameters in Table 3.5 are:




OM ~

1 ~

1
o = = chip ® = + ———— =% 24,5 ns
o h 4+ j0.23x10°
QD‘OP ® _ 29 counts (uniformly distributed truncation error)
Opy = - 193 fps [1]
Ogc = - 15 degree [1]
Yoins ™ .01 cycle [1]
1 (42 i 1% g
-1 0 0 OOM 0 0 0 1 1 0
2
0o -1 0 0 OOM 0 0 -1 0 0
2
0 1 -l— 0 0 OOM 0 0o -1 1
2
0 0 0 o 0 0 -1
¥, om | | i
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Table 3.5
’ Reference System Measurement Noise Covariance
Row Col Value* Units
B 1 1 chA aecz
2 2 caTOA secz
3 3 czTOA secz
; 4 4 czTOA sc.ecz
5 5 czDOP (:ountsz
) 6 6 °2DOP c:oumtzl2
7 7 UZDOP cmmtsz
8 8 czDOP 22 countsz
0 9 9 cZEM fpsz
10 10 o%c deg?
: 11 11 zZZOM
11 12 % oM
12 11 s
T 12 12 T
12 13 -02
13 12 .
5 ’ . 13 13 202,

i
&
&
) %
g
b7
b
¥
£
2
&

*
See text for typical parameter values.




3.2 Suboptimal Filters

In this section, several suboptimal filter candidates will be de-
scribed. Only the general form of the filters will be described since the
exact state vector can be chosen only after sensitivity analyses. Conse-
quently, any conclusions about advantages in computational burden must be

reserved until after an appropriate state vector is chosen for the filter.

3.2.1 Kalman Suboptimum Filters

The form of the Kalman suboptimum filter is exactly the same
as the Kalman optimum filter, i.e., it is governed by the equations
given in Section 2.1. The primary difference is the number of states in
the state vector. In addition, some of the models for a given state may
be different than the model for the same state in the optimum filter.
This is often done when it is désirable for the model to attempt to ac-
comodate a variety of errors in a suboptimum fashion rather than con-
centrating on a particular error. This type of filter has proven very
sucressful in a large number of cases. The number of states required
and which state models to incorporate are determined by sensitivity

analyses and experience.

3.2.2 ~fixed/Scheduled Gain Suboptimum Filters

This suboptimum filter considerably reduces the number of op-
erations required at each measurement time by eliminating the gain cal-
culation from Eq. (3.6). The amount of computation in the extrapolation
phase is also reduced since a covariance is no longer needed. The equa-

tions required are:

-~

X °1<',k-1i‘k-1 +K (s - l"k“‘k.k-li"k-l]
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and defining equations for K(k).

K(k) may be a single fixed matrix of gains or it may be a set of
gain matrices from which the appropriate matrix is chosen by some pre-
determined criteria or by some external signal (e. g., a maneuver de-
tector). A common method for selecting the gain values is to solve the

steady state Riccati equation for the covariance P,

FP + PF! - PHR’IHTP +GGT = 0 (3.7)°

and then use the P obtained to calculate K
K = PH® [HPHT + R]'l
Note to do this some nominal geometry.must be selected. The value
of GGT may also be adjusted to improve the performance of the filter.
The reduction in the amount of computation is naturally accom-
/
Panied by degraded performance and a possible requirement for addit-

ional states to meet minimum performance requirements.

3.3 Fading Memory Filters [21]

This filter is a modification to the Kalman suboptimum filter in
Section 3.1. The basic idea is to fade out information based cn past
measurements and weigh the most recent measurements more. This
is an attempt to overcome efiects of the mismodelling which is called
a divergence phenomenon. This is said to occur when the estimate of
the state becomes inconsistent with the error covariance predicted by
the filter equations.

The fading memory filter is a simple modification to the filter

equations in Eq. (3.6). The change is to Eq. (3. 6c) which becomes

95




T BAT

’ i

P =@

k k.k-lpk-l‘p

K, k-1

)+ Q.

whkere B> 0.

It is hoped that this rather minor modification to the suboptimum

filter in Section 3. 2.1 will make a noticeable improvement in performance.

3.4 a -B Filter [22]

This is a simple filter which has proven successful in some ap-
plications. This filter would apply in the case where TOA measurements
only are made. The state vector would then consist of position and time
estimates and rates of each. The basic assumption of the a-B filter for
multivariable systems is that the measurements and the dynamics of the
sets of a variables and its associated rates are independent and do not
interact. The simplest form of the &-# filter would use constant values
for @ and B. Other methods for choosing @ and B may also be considered.

Let s represent a generic state and r its rate. In the naviga-
tion problem s might represent each of the coordinates and the clock
bias while r represents the corresponding rates. The a-pB filter can

then be described by the following equations:

st (k)

s (k) + a(k)[y(k) - 8 (k)]

et = rTk) + B[ (y(k) - & (K)/T)

where

+ - -
a+. r represent updated values and s , r represent

the extrapolated values and T is the time between updates
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s"(k) = s (k-1) + Trt(k-1)

k) = rtk-1)

y(k) is the state measurement at time k

One method for choosing ""optimal @-B gains" is to use the Kalman
filter equations for the two state systems of the state variable and its rate
where only a measurement of the state is available [22]. The formulations
are shown to be equivalent in Ref. [22]. In the multivariable case, gains
for each of the coordinate components of the state are computed ignoring
the correlations. Then one set of gains will serve for each of the three co-
ordinates plus one set for the user bias.

In using an & -B filter in the NAVSTAR/GPS system, it will be
required to generate pseudo-measurements since the measurables are
time of arrivals and not positions. Thus in addition to the & -8 filter,
an algorithm, such as a single-fix, must be implemented to generate
the pseudo-measurements.

By their nature, & -B filters do not perform well when the rate
variables change rapidly. It is in the period of acceleration that this type
of filter must be examined most carefully. Perhaps increased plant noise
or a fading memory mechanization will make the filter less sensitive

to changing velocities.
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Section 4. - COVARIANCE ANALYSIS

4.0 Introduction

The purpose of this section is to describe the covariance analy-
sis task of the NAVSTAR/GPS Navigation Analysis and Algorithm Develop-
ment Study. This description includes a summary presentation of
covariance analysis, a discussion of the particular application to the
candidate algorithms described in Section 3, and the results of the
analysis runs completed to date.

The objective of covariance analysis is to establish the expected
navigation accuracy of the filtering algorithms selected as candidates
for use in the operational system. The accuracy can be established
only with respect to the reference model and the assumed statistics
of the error sources. Many of the factors affecting accuracy, such as
user to satellite geometry, receiver configuration, satellite selection
algorithm, update rates, etc., cannot be modelled in the format required
for covariance analysis. For this reason, each covariance analysis
run has associated with it a scenario which consists of a particular
choice from all possible combinations of these factors. Covariance
analysis cannot tell the entire story of accuracy except with respect
to the reference system and a i)articular scenario. It does, however,
give a good indication of the expected error variance when sever:

scenarios are analyzed.

4,1 Covariance Analysis

This section describes in a summary fashion the problem to be
solved by covariance analysis and the technique of solution. The

method of solution described herein has been implemented in a general
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covariance analysis program CANOMIS (Covariance ANalysis Of
Multisensor Integrated Systems). The results presented in subsequent
sections are the result of applying CANOMIS to the specific problem of
GPS navigation.

4.1.1 The Problem

All of the candidate filters in Section 3 use weighting matrices
or gains when incorporating new data. The gains are computed based
on such things as the assumed estimation error covariance, the assumed
measurement noise covariance, the assumed input noise covariance,
and assumed system dynamics and measurement process. In general,
each of the assumed values may be incorrect at least in part. Addi-
tionally, it is necessary to ignore certain known error sources to
reduce the computational burden in actual operational mechanizations.
The purpose of covariance analysis is to determine the expected error
arising from each of these sources. For purposes of discussion, these

error sources may be classified into the following categories:

(1) an incomplete state vector,

(2) incorrect system matrices,

(3) incorrect initial state statistics,

(4) incorrect statistics for the white noise processes,
(5) nonwhite noise in the plant and/or measurements.

These errors in the modelling can lead to the so-called
""divergence problem'' which, loosely speaking, occurs when the actual
errors between the true states and the estimated states become incon-
sistent with the assumed filter covariance. The greatest concern is
of course when the errors become much larger than indicated by the

filter covariance. Two versions of this divergence phenomenon may
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be distinguished. ''True' divergence is said to occur when the covari-
ance of the actual error becomes unbounded as the length of the data
span increases. ''Apparent'' divergence occurs when the actual error
covariance matrix remains bounded, but is much larger in some sense
than the filter error covariance. In each case the estimate of the true
state is unreliable so that the behavior of the estimator i3 unsatisfac-
tory. Of less concern, but a problem nonetheless, is the situation in
which the actual estimation error is substantially less than indicated
by the filter covariance. While the estimator may provide acceptable
estimates, the lack of knowledge of the covariance can nhibit actions
based on the response of the estimator.

To discuss the problem in more detail, consider the following

linear systems, each of which describes the errors about some point.

(4.1)

]
L}
L)
]
| %
[ ]
+
0
@
ic

(4.2)

Hx +v
i

where

EF is the filter state vector, dimensioned n

FF is the filter plant matrix

GF is the filter input distribution matrix

21“ is the filter plant noise vector (unity PSD white noise)

F
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i z is the filter observation vector
H_ is the filter measurement matrix
v is the filter measurement noise vector
x is the reference error system state vector, dimensioned n_
F _ is the reference error system plant matrix
G_ is the reference error system input distribution ma: ix

is the reference error system plant noise vector

B (unity PSD white noise)
. z is the reference error system observation vector
'

H_is the reference error system measurement matrix

v is the reference error system measurement noise vector

The system in equation (4. 1) is the system used to generate
the gains to be used in recursive filtering of the data. Section 3
concerned itself with the problem of defining the relationships used
to generate these gains. Now the techniques for determining the
' accuracy obtainable with each of the gain computation methods will
be presented. The results to be presented are of course scenario
) . dependent. The technique of covariance analysis determines directly
a statistical accuracy and thus eliminates the need for extensive

Monte Carlo simulation.

4.1.2 Solution Technique

The desired output of the covariance analysis is the 1-0 error

of the filter estimates and the sensitivity of each estimated state to

e Cr omeo—
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selected reference system error sources. This information is

embodied in the estimate error covariance matrix P.

P = El(x, - xp)(x, - Xp) ] (4.3)

x_. is the filter state vector augmented with zeros to
make the subtraction well defined, i.e., .

* 2y
X, = and 0 isa (n - n_) zero vector.
=F 0 8 F

The solution technique is to generate the matrix P as a func-
tion of time. To do this, the equations for P must be available and
can be developed as follows. First, to simplify the notation, define

*
a new vector 5‘

X X «% %% '~ (4. 4)

In the most general case, the dynamics of the new state vector

x"t is different from both x and x
=8 ~8 =F

propagated. However, in all of the filters proposed in Section 3, only

since the difference is being

kinematic relations are considered so that it is safe to assume that

&
FF in (4.1) is a subblock of F’ in (4. 2) and thus is has dynamics

described by (4.2). More explicitly

|

RS Fei 0| *p
1s=-’-‘-n.--’El“=Fl--’Es. whel doel - e +Gs“a
O: 0 0
*
=F x +Gu (4.5)
s—s s 8
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Note that GF“F does not appcar since it is an artificial quan-
tity used only in the filter gain generation and estimate extrapolation
assumes zero-mean noise.

In addition to the dynamics described by equation (4.5), there
is a measurement done at discrete times. At the time of a measure-

*
ment x is replaced by

x Kz
,_(: =x_ - ( bz 410 GUPRE s ) (4. 6)
0 0 -

where

K is the gain matrix

z is the vector of observations from the reference

error system 2z =H x +v
=8 s=s -8

The equations to define P are now available. Using equa-
tions (4.3), (4.4), (4.5), and (4. 6) the following are obtained.

(a) Extrapolation

’ -
P ® % k-1 Pl %1 T %% D
where t

Q = /et G'G.T @l (At-T) dr
o

ﬂ k-1 is the state transition matrix for (4. 2)
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(b) Estimation

K H K H ¥
Po= {1-]----2 P {1-]----2 (4. 8)
0 0
K | k1T
%GR T B
0 | y

where

Rs is the measurement error covariance
T
R =E[vv "]
s s 8

*
and the partitions are conformable with the defined vector x,

ORINCON's covariance analysis program CANOMIS propagates
these equations as a special case of the more general problem. This

is done by setting logical input variables (see CANOMIS description).

4.1.3 Analysis of Results

All of the covariance analysis is being done in inertial coordi-
nates. Therefore the individaal axis components have no particular
relation to the navfgation coordinates. A more meaningful output is
the root sum square (RSS) error. This is the usual Euclidean Norm
of the 1-0 errors along the component axes. All of the position and
velocity results presented will be in terms of the RSS quantities.

In addition to results considering all error sources, it is desir-

able to isolate the effects of certain individual error sources. In this
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way an error budget can be made which quantifies the sources of error.
Also note that the error covariance equations (4. 7) and (4. 8) are linear,
therefore it makes sense to define sensitivities to the various error
contributions, i.e., the variance of each of the navigation variables

0.2 j=1,2,...,m may be written as a sum of say r input error

variances times a sensitivity for each.

n
& 2 .. i e
ai_i:loj aji j=l,2,ss:..m 1im21,2,...,71 (4.9)

where

0. is a generic error source such as white noise PSD, initial
condition variances, etc.

is the sensitivity of the jth variance to the ith input
variance.

aji
These sensitivity coefficients are useful in that through their
use, error budgets can be updated without extensive simulation. The
method for determining these sensitivities is generally to run
the covariance analysis with all of the error sources set to zero with
the exception of the one of interest. For a certain class of error
source, the sensitivity is derivable from the covariance matrix of

the complete error system [see Appendix A).

4.1.4 Analysis Scenario

The usefulness of covariance analysis lies in its ability to pro-
vide statistical information over an ensemble of errors. To extend this
philosophy to the scenarios, an approximate method of analysis was
used. In this method, a step change of acceleration variance was

introduced into the reference system. This was done to simulate the
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effects of an ensemble of acceleration changes and to determine the
expected navigation error. The approximation comes in due to the
fact that the linearization of the measurement process must be made
about the nominal or zero acceleration trajectory. For short periods
of time, this error is not large and the results are still valid for com-
parison results.

The values of the reference system parameters used in the
covariance analyses are listed in Table 4. 1. Table 4. 2 contains the
initial covariance matrix values for the refercnce system. These
values were used in all of the covariance analysis computer runs

except as noted.

4.1.5 Results of Covariance Analysis

In this study, covariance analysis was used not only to analyze
the performance of suboptimal filters, but as a design tool. The
filter development became an evolutionary process with the covariance
analysis providing the data for decisions on the filter development.

The primary emphasis in the filter development was the unaided ship
receiver. By unaided, it is meant that no external velocity or accelera-
tion information is provided. It was assumed, however, that in all
cases pitch and roll information was available from gyros.

The candidate filters contained only kinematically related states
involving position velocity, acceleration, and clock states. The states
also had plant noise added to adjust the gains. Table 4.3 is a matrix
indicating which states are contained in each of the filters for which
extensive analysis was performed. Table 4. 4 gives the plant noise
1-0 values. The filter measurement matrices are the submatrices
of the reference system measurement matrix corresponding to the

included states.
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Table 4.1. Reference System Parameter Values

Parameter Value

) ‘1’l .5 sec
User Clock 80
Allan variance T2 ”c4
parameters 10 '|'3 5x 10 sec

M -220 db

. .
Ionosphe‘nc error ’, 4212 sec
correlation time i

Ionospheric error” -8
1.7x 10 = sec
) 1-0 value
Satellite clock random 11 1
walk driving noise l. x 107" sec/(sec)?
1-g value

EM log Markov error 1380
correlation time EM sec
EM log Markov error

1-gvalue . 079 meters/sec
Gyrocompass Markov

error correlation time 'GC 1306 asc

Gyrocompass Markov 6.1 x 10'3 radians
. error |- value
Omega error

correlation time T 3600 sec

oM

Omega Markov error

1-¢0 value . 0223 cycles

Omega sinusoid

1.45 x 10-4 cycles/sec
error frequency

*This value is for the single frequency receiver.
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Table 4.1. Reference System Parameter Values (Continued)

Parameter

Doppler count
integration time

Satellite signal
frequency

Time-of-arrival
measurement error
1-¢ value

Doppler measurement
error l-g value

Gyrocompass measurement
error l-gvalue

EM log measurement
error 1-¢g value

108

Value

.2 8ec

1.57542 x 109 cycles/sec
25 x 10-9 sec

. 289 counts
23 ;
2.62 x 10 ~ radians

.14 meters/sec




Table 4.2, Reference System Initial Covariance Valucs
(Non-zero elements of upper triangle)

Row Column Value
1 1 1 x 108 meterl2
8 2
2 2 1 x 10 meters
3 3 1 x 108 meteruZ
@ 4 4 100 (meterl/lec)z
5 5 A 100 (metera/u.ec)Z
6 6 100 (meters/uzc)Z
. 7 7 1 (meter/secz)Z
8 8 1 (meter/eecz)Z
9 9 1 (meter/secz)2
10 10 3. 1666 x 10°°
¢ 10 11 3.821 x 10”2
10 12 3.96 x 1072
10 13 161 % 10°°
1 11 5.48 x 10”2
’ -2
11 12 6.15x 10
11 13 1.37x10°2
12 12 7.85 x 10™2
* 12 13 1.31x 10" 2
13 13 6.92 x 10”2
-18 2
14 14 l. x 10 (sec/sec)
15 15 I 10”4 (.ec)'z
# -
16 16 l. x 10 L (aec)z
~16 2
17 17 .44 x 10 (sec)
t 18 18 9. (met:erl)2
L 19 19 9. (mete:-o)z
20 20 9. (meterl)z
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Table 4.2. Reference System Initial Covariance Values
(Non-zero elements of upper triangle) (Continued)

Row Column Value
21 21 1.0x 107"° eecy®
22 22 1. x 10”24 (sec/sec)?
23 23 £ o
23 29 *
23 35 *
23 41 *
24 24 9. (meters)Z
25 25 9. (meters)2
26 26 9. (meters)2
27 27 1. x 10 8(sec)?
28 128 1. x 10-24 (sec/sec)2
29 29 *
29 35 *
29 4] *
30 30 9. (meters)2
31 3] 9. (meters)2
32 32 9. (meters)”
33 33 1h % 10”1 (sec)?
34 34 1. x 107%% (sec/sec)®
35 35 *
35 4] *
36 36 9. (meters)2
37 37 9. (metera)2
38 38 9. (meters)2
39 39 1. x 10-18 (sec)2
40 40 Yiox IO.Z4 (stec/u:c)2

*Value computed using satellite/user geometry in formulas given in
section 1.2.2.3 with € = 17 ft.
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) Table 4.2. Reference System Initial Covariance Values
(Non-zero elements of upper triangle) (Continued)

Row Column Value
: 41 41 *
43 43 1,61 % 107 tmeters/sec)”
45 45 3.721x 10°° (radians)z
) 46 46 .534 (radiana)Z
47 47 < ol (radians)z
g 48 48 .314 (radians)z
f 49 49 6.6% 107
; 50 50 .534 (radians)’
51 51 .31 (radiams)Z
52 52 .314 (radia.ns)Z
) 53 53 6.6 10"
54 54 .534 (radians)2
55 55 .31 (ra.dia.ns)2
56 56 .314 (radiam:)2
' 57 57 6.6x 107
58 58 .534 (radians)’
59 59 .31 (x'adians)Z
60 60 .314 (radians)® .
61 61 6.6 % 10"

*Value computed using satellite/user geometry in formulas given in
section 1.2.2.3 with € = 17 ft,
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Table 4. 3.

Filter Configuration Matrix

Filter Type

States 11-State | 10-State | 8-State | 7-State | a - 8
x-position yes yes yes yes yes
y-position yes yes yes yes yes
z-position yes yes yes yes yés
x-velocity yes yes yes yes yes
y-velocity yes yes yes yes yes
z-velocity yes yes yes yes yes
x-acceleration yes yes no no no
y-acceleration yes yes no no no
z-acceleration yes yes no no no
user clock bias yes yes yes yes yes
Qe AN yes no yes no yes

frequency error
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Table 4.4. Filter Plant Noise 1-0 Values

Noise Parameter Nominal Value States added to
(4] 1 met:er/(sec)l/2 X, y, z position
pos e
(o} ik meten-/(se<:)3/2 x, y, z velocity
vel
5/2 .
o .01 meter/(sec) x, y, z acceleration
acc
Yacik lo-lzsec/(sv.-:c)l/2 bias error
-11 1/2
it 10 " “sec/(sec) ' /day frequency error
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In the following subsections, the covariance analysis of the
filter development will be presented for several candidate filters.
Following this, sensitivity of filter performance to key system param-

eters will be presented.

4.1.5.1 Eleven-State Suboptimal Filter

The eleven-state filter includes all of the candidate states.
The first attempt at the cleven-state filter was a Kalman formulation
with no modifications made to accommodate unmodelled disturbances
in acceleration. The results of this are shown in Figures 4.1 and 4. 2. *
In Figure 4.1, no measurements of doppler shift are made. Figure 4.2
shows the results when doppler measurements are made. The scenario
in both cases includes time between measurements of one second,
ab meter/sec2 step change of acceleration at 20 seconds, and four
satellites used at each measurement time. Figures 4.3 and 4.4 show
essentially the same cases except that at each measurement only one
satellite signal was used in a round-robin fashion using the same four
satellites. Figure 4.5 shows the results with a fading memory filter
with a boxcar of acceleration uncertainty of 5 mei:era/sec:z for
20 £ t < 35, The fading memory filter uses an exponential fade factor.
The exponent is .2 times At (where At is the integration step size)
for 0 £ t< 25 and 40 <t <50 and itis .6 for 25 <t < 40,

Examination of Figure 4.1 and 4.2 shows that in the absence of
doppler measurements, the filter does not provide good velocity infor-

mation. The position information is not substantially worse except

*NOTE: Each figure contains time plots. Plot (a) shows the RSS
position error standard deviation versus time and plot (b) shows the
RSS velocity error standard deviation versus time. Care should be
taken when comparing plots since not all of the scales are the same.
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where the acceleration uncertainty is large. This would be the case

of the unaided system. The application of a fading memory does appear to

be of value in smoothing the effects of an unmodelled acceleration.
Comparing the results of Figure 4. 3 and 4. 4 to Figures 4. 1

and 4.2, respectively, shows that there is a considerable loss of

accuracy when the measurements are taken successively rather than

in batch. This indicates that the four-channel receiver has a consider-

able advantage over a single-channel receiver.

4.1.5.2 Ten-State Suboptimal Filter

The ten-state filter is identical to the eleven-state except that
the user clock frequency term is not included. The user clock fre-
quency error is a small number and its effect may be at least partially
absorbed in a clock bias which is modelled as a random walk. The
introduction of a fading memory filter also reduces the error intro-
duced by this simplification.

Figure 4.6 shows the results of the ten-state without doppler
measurements. The scenario is a 5 met:ex'/sec2 boxcar change of
acceleration at 20 seconds with a return to zero at 40 seconds.

Figure 4.7 is the same reference system scenario with a fading
memory filter. The fade factor is exponential 1 times At. At
t = 25 seconds, the exponent was changed to 2 times At.

The results of ten-state fading memory filters with doppler
measurements are shown in Figures 4.8 and 4.9. The run of
Figure 4.8 has a fade factor with .5 times At in the exponent changing
to 1 times At att = 25 seconds. The run corresponding to Figure 4.9
has the step change of acceleration decreasing at t = 35 seconds and
the fade factor exponent equal to .2 times At for 0 < t < 25,

.6 times Ot for 25 <t £ 40 and back to .2 times At for 40 < t < 50.
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The sensitivity of the results to the measurement errors is
shown in Figures 4.10 and 4.11. The runs are the same as the one
for Figure 4.9, except for the measurement errors. For Figurc 4. 10,
the doppler error was reduced to a one-half cycle truncation error
. 145 cycles). The results in Figure 4.11 are for a TOA
measurement error ¢ of 5 ns and a doppler truncation error of
about 22 degrees (ODOP = .01732 cycles).

Comparison of Figure 4.6 and 4.7 shows the advantage to be
gained when using a fading memory formulation on the ten-state filter.
The fade factor may, however, not be the best. The effects of different
fade factors for the case where doppler measurements are made can
be seen in Figures 4.8 and 4. 9. The filter with the larger fade factor
in Figure 4. 8 has a better response to transients while the filter with
the smaller fade factor has better steady state properties.

The effects of the receiver measurement errors can be deter-
mined by comparing Figures 4.9, 4.10 and 4.11. The improvement
in velocity accuracy is shown by the change from Figure 4.9 to 4. 10
and to 4.11. There does not, however, appear to be any improvement
in position error when the TOA measurement error is reduced. This
indicates that the position error is more dependent on nonreceiver

related errors.

4.1.5.3 Eight-State Filter

The eight-state filter models position, velocity, and two-clock
states only. The acceleration terms are ignored. It would be expected
that the filter would not perform too well if there are accelerations.

To partially compensate for this, the fading memory has been used

with different fade factors.
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Figures 4. 12 and 4. 13 show the results when the filter memory
was not faded. In these runs, a step change in acceleration uncertainty
of 5 met:ers/sec2 was added at t = 20 seconds. Figure 4.12 is for
the filter with doppler measurements, Figuré 4.13 for the filter with
TOA measurements only.

The effects of an adaptive fading memory are shown in Figures
4. 14 and 4. 15. Figure 4.14 is the result when the exponential fade
factor has an exponent of 1 times At which changes to 2 times At at
t = 25 seconds. The results of Figure 4.15 are for a fade factor expo-
nent of .2 times At for 0 £ t £ 25 and 40 < t < 50, with the exponent
changing to . 6 times Ot for 25 < t S 40,

The results here show that the eight-state filter is not satis-
factory in the unaided case unless it has a fading memory mechaniza-

tion.

4,1.5.4 Seven-State Filter

The seven-state filter models position, velocity, and user
clock bias. This filter has the same relationship to the eight-state as
the ten-state has to the eleven-state filter. A fading memory or
some other compensation will be required in absence of the additional
state. '

Results of seven-state filter runs are shown in Figures 4. 16
and 4.17. For Figure 4. 16 the filter incorporated doppler measure-
ment. The acceleration uncertainty was a boxcar of magnitude

5 meters/sec lasting from t = 20 seconds to t = 40 seconds. In

Figure 4.17, the results are for an adaptive fading memory filter
with the exponent of the fade factor equal to .2 times At for 0 S t < 25

and 40 < t £ 50 and equal to . 6 for 25 < t £ 40. The input acceleration

uncertainty was a boxcar again but lasting from t = 20 to t = 35 seconds.
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The results show that a fading memory mechanization is needed
for the seven-state filter to perform in a satisfactory fashion. In
fact, comparison of Figures 4. 15 and 4. 17 shows that the seven-state
fading memory performs better than fhe eight-state after the transient.
This is due to the fact that the time bias rate error (the eighth state)
looks like an acceleration error. The additional clock state then adds

damping to the filter when unmodelled accelerations are applied.

4.1.5.5 a-e Filter

This is an eight-state filter which has position, velocity, user
clock bias, and user clock frequency error. The a-p filter must
have a preprocessor such as a single fix algorithm to supply it with
pseudo-measurements. The pseudo-measurements, position and user
clock bias, are filtered by four two-state filters, three identical filters
in position coordinates and one other for the clock. This filter has
no provisions for incorporating doppler measurements.

Figure 4. 18 shows the results of a covariance run with a
boxcar of 5 n'setet'll/texecZ acceleration uncertainty starting at
t = 20 seconds and ending at t = 40 seconds. Figure 4.19 shows the
results of the same run except that a fading memory filter was
employed where the exponent of the fade factor was .5 times At.
Figure 4. 20 shows the results using an adaptive fading memory. The
boxcar of acceleration was shortened to extend from t = 20 to t = 35.
The exponent of the fade factor was .3 times At for 0 S t £ 25 and
40 < t € 50 and it was .9 times At for 25 <t £ 40.

The -8 filter does not work well without a fading memory
mechanization. The adaptive fading memory seems to give better
steady state response and better transient recovery. The a-p filter,
due to its inability to incorporate doppler measurements, does not

give good velocity estimates.
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4.1.5.6 Other Factors

There are certain other factors which influence the filter per-
formance which are of interest. These factors are involved in any
filter mechanization. Two of these factors, geometry and update time,
will be discussed in this section. Rather than carrying out the analy-
sis for all of the filters, one particular filter was chosen as an exam-

ple. The filter used was the ten-state filter with doppler measurements.

4.1.5.6.1 Effects of Geometry

Much analytic work has been done to study the geometric effects

of the GPS determined position. The common measure for the geome-

_ tric error scale factor is GDOP (see discussion in Section 2). GDOP

is, however, a static measure based on a single-fix least squares
position estimate. GDOP does provide a convenient performance
measure to use when selecting a satellite constellation for navigation.
Since GDOP was not designed as a performance measure for recursive
filtering, it is of interest to use the results of covariance analysis to
relate GDOP to the expected navigation error. It is also of interest

to relate GDOP to the doppler derived velocity error. Figure 4.21
shows the three-axis RSS 1-0 navigation error for the ten-state fading
memory filter (exponent of .2 times At) with doppler and the parameter
values in Tables 4.1 and 4. 2. The user was variedv in space and time
to get a range of GDOP values between 2 and 9. The values represent
an approximate steady state error with no acceleration uncertainty

in the reference system.
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Figure 4.2]1 Geometric effects on navigation errors.
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The results indicate that the RSS position error 1-0 value is
roughly proportional to GDOP. The RSS doppler determined velocity
error 1-0 value however appears to be independent of geometric fac-
tors. This is probably due to the fact that the dominant errors in the
determined velocity are time and frequency factors and not dependent
on geometry.

3

4.1.5.6.2 Measurer!{ent Rate

In the filte - mechanization, the question arises as to how often
measurements should be taken. Naturally the more irequent the
measurements, the better the accuracy will be up to certain bounds.
However, more frequent measurements require more processing
of data. This then is an area of tradeoff since requiring high data
processing rates implies either a faster processor is required or the
processing of other functions will suffer. The sensitivity of filter per-
formance to update time is thus of interest.

Figures 4. 22 and 4. 23 show the results for a state filter with
update rates of 2 seconds and .5 seconds. This is the same filter
as the one used to generate the results shown in Figure 4. 9.

In Figure 4. 24 the sequential channel filter is shown with the
update rate increased to four measurements per second. This is
roughly equivalent to a four satellite measurement taken every second.
This result can then be compared to the results shown in Figure 4.2
which is the same filter with measurements of four satellites taken
in batch each second. The result also is to be compared with the
results shown in Figure 4. 4 which is the sequential channel filter
updated once a second or a total of four seconds for an entire round

robin,
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4.1.5.7 Error Source Sensitivities

The actual values in an error sensitivity are dependent upon
many parameters of the filter mechanization. The idea in this sub-
section is to find the approximate sensitivity to the major reference
system error sources. The sensitivity to measurement error and
geometry have been discussed previously. The error sources to be
considered are the ionospheric delay error, the satellite position errors,
the satellite clock errors, measurement errors, and the user clock error
mode'. The percent of total error is given in Table 4.5 for the steady
state RSS position and velocity error variances for two particular filters.
The two filters are the ten-state and the seven-state fading memory filters

with a fade constant exponent equal to .2 times At.

4.1.6 Summary

A summary of the covariance analysis runs showing the exact
standard deviation values for steady state (just prior to the unmodelled
acceleration) and the exact standard deviation values of the peak transient

is presented in Table 4. 6.

4.2 Monte Carlo Verification

The covariance analysis method employed is only approximate
since it attempts to simulate an entire ensemble of maneuvers while
using the linearized model which assumes no maneuver. The error
made in this approach was assumed a priori to be small. It is neces-
sary then to verify this assumption. This will be done by Monte Carlo
simulation runs over selected scenarios. It will not be, however, an

extensive Monte Carlo analysis.

4,2.1 Monte Carlo Simulation

The Monte Carlo simulation will be done with the same com-
puter analysis program, CANOMIS, that was used in the covariance
analysis. This ensures that the same models are being used. The

difference is that instead of propagating a covariance matrix, a
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Table 4.5 Filter Error Budget

Error Source

10-State Filter

7-State

Filter

% of 3-axis
position error
variance sum

% of 3-axis
velocity error
variance sum

% of 3-axis
position error
variance sum

% of 3-axis
velccity error
variance sum

Ionospheric delay ' 54,7 ~ 0 53.5 ~0
error
Satellite position 25.7 ~0 25.2 ~0
error (all satellite)
TOA measure- 19.2 ~0 18.8 ~ 0
ment error
Acceleration ~0 ~0 ~ 0 47.
disturbance
User clock ~ 0 1. 2. 44.7
Doppler measure- ~ 0 98. ~ 0 8.
ment error
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Table 4.6 Covariance Analysis Summary

; Steady State Standard Deviation Peak Standard Deviation
Figure No. (Extrapolation Value) during Transient
Position Velocity Position Velocity
" (Meter) (Meter/sec) (Meters) (Meters/sec)
4.1 16.27 2.96 76.29 35.23
4.2 13.2 .28 21.40 17. 94
’ 4.3 24. 68 5,12 134. 67 45.78
4.4 15.92 .62 50. 02 28.C8
: 4.5 14.03 « 33 15.77 12.94
4.6 16.27 2.98 110. 46 38.94
4.7 18. 47 4.18 37.58 25.26
¥ 4.8 16. 78 . 62 17.33 8.63
4.9 13.51 .33 15.31 13.08
4.10 13.48 .20 15.29 10. 69
. 4.11 14.58 .05 15.21 8. 66
4.12 12.99 .64 58.2 28.28
K 5 4.13 15.03 1.79 489.90 116. 00
4.14 17.01 1.92 37.45 26.12
i 4.15 13.70 . 67 20.92 20.51
; ’ - 4.16 13.32 1.12 557.79 96.76
? 4.17 14.25 ‘ . 82 27.03 26.06
g 4.18 15.54 1.82 496. 68 115, 35
' 419 19. 36 T 55.86  38.38
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4.20

4.22

4. 23

Table 4. 6 (continued)

17. 14
15.14
13. 44

13.94

2.02
.46
.25

.52
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64. 82
25.18
14. 39

20.18

43.24

19.24

9.42

15. 41




reference system state vector is propagated and the measurement
matrix is linearized about a simulated trajectory.

The Monte Carlo simulations use gains generated by the can-
didate filter and with these gains process the simulated data according
to equation (4. 6). The simulated data is generated from equation (4. 2)
by replacing the noise vectors with white Gaussian pseudo-random
number vectors with the appropriate variances.

The scenarios used are the ones outlined in Section 1. The
satellite selection was done using the approximate volume minimiza-
tion algorithm described in Section 2. The verification runs were
made with the ten-state filter, the eight-state filter, and the a-f
filter, all using doppler measurements but otherwise unaided. These
were chosen as representative of all the filters analyzed.

As in Section 4.1, the results will be shown via plots of the
3-axis RSS position and velocity error. The (a) part of each figure

is the position error and the (b) part is the velocity error.

4,2.2 Morice Carlo Results

The results of several Monte Carlo simulations are shown in
Figures 4. 25 through 4. 31. Figures 4.25 and 4. 26 show the results
of the eight-state fading memory filter with the fade constant exponent
equal to . 33 times At. Figure 4.25 shows the results for the ship
scenario and Figure 4. 26 for the aircraft scenario. The results for
a ten-state fading memory filter with the fade constant exponent
equal to . 33 times At applied to the ship scenario are shown in
Figure 4.27. Figures 4.28 to 4. 30 are a series of ten-state fading
memory filters with different fade constants (exponents equal to

.2 At, .33 At, and .5 At, respectively) applied to the aircraft
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scenario. The results may be validly compared since the pseudo-
random number generator was started from the same value in each
case. Finally, Figure 4. 3] shows the results using a fading memory
a-f filter with the fade constant exponent equal to . 33 times At.

The results from the two eight-state filter runs (Figures 4. 25
and 4. 26) confirm the covariance analysis results, The mean RSS
position error in Figure 4. 25 (a) appears to be below the value pre-
dicted by the covariance analysis. The velocity error shown in
Figure 4.25 (b) is within the limits predicted by the covariance analy-
sis. The one notable deviation in the velocity error is at t = 260,
where the ship undergoes a 3 degree/sec turn at 15 knots. This turn
is an acceleration of approximately . 04 g so that the velocity error
is to be expected. The velocity errors shown in Figure 4.26 (b) are
for the aircraft scenario. The aircraft turns at t = 300 and t = 360
are approximately 5 g and .5 g turns, respectively. The velocity
errors in these turns are again what the covariance analysis would
predict when the acceleration uncertainties are scaled to the values
in the scenario. The RSS position error from Figure 4.26 (a) is
approximately at the 1-0 value from the covariance analysis, except
during the 5 g maneuver. The unusual curve shape starting just prior
to t = 500 is due to the fact that the acceleration goes to zero there.

The results for the ten-state fading memory filter applied to
the ship scenario (Figure 4. 27) show good position results. The
velocity estimation error is somewhat larger than the steady state
1-0 values predicted by the covariance analysis. The results of the
aircraft case (Figures 4.28 tiirough 4, 30) give results which are again
in good agreement with the covariance analysis. Variation of the fade
factor shows the larger fade factor reduces the magnitude of the tran-

sient errors during periods of large acceleration while the steady state
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errors increase. This again is the result which would be expected
after examining the covariance analysis results. The shape of the
velocity error curves indicate the ten-state filter is able to track
accelerations after an initial transient. This can be seen from the
small "bumps' on the curve at t = 360 and t = 480.

The last Monte Carlo results shown (Figure 4. 31) confirm
good agreement between the covariance analysis and the simulation

for the fading memory a-§ filter.

In the simulation runs, the fading memory filters were mechanized
with the same fade factor throughout. An analysis into making the fade
factor a function of the measurement residuals in probably worth while

as a future task.
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Section 5. - COMPUTER PROGRAM SIZING

5.0 Introduction

This section addresses the final task of the algorithm develop-
ment study. This task was to determine the computational require-
ments (i.e., arithmetic operations and storage locations) for the
candidate algorithms. These results will provide an input to the effort
establishing the computer program size. The results to be presented
here do not account for computer word length. The true computer
size requirement will probably depend on the word length used in the
computer. This problem has been considered to be beyond the scope
of this study, though ORINCON is aware that it must be addressed
somewhere.

The actual computer mechanization of the navigation equations
can be divided in two parts. The first part is the preprocessing of the
raw measurement data to obtain the measurables for the filter. The
second part is the filtering of these measurables to obtain the actual
navigation information. It is the latter problem which will receive the
most attention in this section. The first part is more dependent on

factors outside this study.

5.1 Common Requirements

All of the candidate filters fall into the category of extended
filters. By this it is meant that the filter is linearized about the
current e-timaté. The measurables for this type of filter are the
difference between the predicted value of the measurement and the
actual measured value. The computation of the expect‘ed measure-

ment is a common requirement of all of the filter mechanizations.
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The foilowing steps are required to perform the measurable computa-
tion:

(a) Determination of the time of transmission of the
received signal. This can be accomplished from
knowledge of the system requirements which specify
the times of transmission.

(b) Determination of the satellite positions at the time
of signal transmission. This can be done using the
equations for this purpose presented in Section 1.

(c) Correction of the measured time for satellite clock
errors and ionospheric delay errors. This is done
by using the received data and the algorithms for
these purposes presented in Section 1.

(d) Computation of expected measurement values. This
computation involves using the estimate of the user
position and velocity at the time of reception and the
computed satellite locations. From these, expected
range and range-rate values can be computed.

(e) Formation of the filter measurables. This final
step is done by differencing the expected measure-
ments and the actual corrected measurements.

Other common requirements include the alert computation

(such as the candidates outlined in Section 2), general matrix operation
subroutines, and special mathematical functions (e.g., square root,

vector norm, etc. ).
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8.2 Filter Requirements

In this subsection, the computer requirements for a general
Kalman filter and the specific candidate filters will be presented.

This includes the storage requirements and the operation counts.

5.2.1 General Kalman Filter [25]

The computational requirements for the Kalman filter are
given in Table 5.1. Here n is the number of states and m is the
number of measurables. This does not include the computation for
guaranteeing symmetry (Item 15). The computation time is repre-
sented by the number of multiplications since it is largely governed
by the number of multiplications. Additions and subtractions normally
require far less time in most computers. In any case, these opera-
tions are of the same order as the number of multiplications so, for
purposes of comparing algorithme, this operation count is considered
to be valid.

It will be noted below that for the simple dynamics assumed
in each of the candidate filters that items 4 and 6 may be done more
efficiently. Implementation of a fading memory filter adds up to an

addition nz multiplications to item 6.

5.2.2 Eleven-State Suboptimum Filter

For the eleven-state filter the simple dynamics mean that
steps 4 and 6 in Table 5.1 each require 10n multiplications instead
of n3. Also there is no requirement for storage for the state transi-
tion matrix. The measurement noise covariance matrix is also
diagonal so that only m storage locations are needed. Another
consequence of the uncorrelated measurement errors will be dis-

cussed below in Section 5. 3.
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Table 5.1. Computational Requirements for the
Kalman Filter

Quantity Multiplications Storage
1. : n
2
2 pk-l n
2
3. °k, k-1 n
3 ;
ok ¢k, k-lpk-l n Store in pk-l
5. l’12
’ ) 3
3 = (- i
. pk ck.k-lpk-l k,k-l+Qk n Store in ®P
i mn
¥ =T 2 d
8. Pka mn Store in Pk
9. mZ
e & 2 2
10. HkpkH'k+Rk m n m
» P -1 3 . 3
1. (Hkpka +Rk) m Store in HPH + R
oo g R -1 2
12. Kk = Pka (HkpkH'k +Rk) m n mn
13. Ek m
14. X = Kk_z_k mn Store in X
15. P = P (P HT)T mﬂZ Store in P
© P ™ Prre-1 % r/x-1 K
16. Scratch storage nZ
3 2 2 2
TOTALS 2n"+2mn 4n +n+2mn+2mn +m
+m3+2mzn+mn
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5.2.3 Ten-State Suboptimum Filter

In the ten-state filter, steps 4 and 6 of Table 5.1 reduce to
9n multiplications each with again no requirement for a state transi-
tion matrix. The computational requirements for this filter are in

Table 5. 2.

5.2.4 Eight-State Suboptimal Filter -

The simple dynamics used in the eight-state filter mean that
steps 4 and 6 of Table 5.1 reduce to 4n multiplications. The results

are presented in Table 5. 2.

5.2.5 Seven-State Suboptimal Filter

The transition steps for the seven-state filter given in steps
4 and 6 of Table 5.1 require only 3n multiplications and no state

transition matrix storage. The results are given in Table 5. 2.

5.2.6 a-B Filter

The a-B is an eight-state filter which is composed of four
two-state filters. The transition steps reduce to 8 multiplications
and there is only one observable per filter. The results given in

Table 5. 2 do not include the prefiltering of the data.

5.3 Additional Considerations

In this sulsection, additional considerations which impact
e - amputetional requirements are discussed.
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5.3.1 Sequential Processing

Since the measurement errors in the GPS receiver are uncor-
related (i.e., the R matrix is diagonal) the data may be processed
sequentially even though it is received in batch [26] with exactly the
same results. Processing the data sequentially always requires
fewer multiplications than batch processing [25]. For scalar sequen-
tial measurements, the totals in Table 5.2 (except the &-8 filter which
already uses this advantage) can be reduced by [25]

AM=m3-m+2nmz-2nm

m(m-1)(m+2n)

The numbers in parentheses in Table 5.2 are the number of
multiplications reduced by AM. Since the measurement errors are all
uncorrelated in the GPS environment, the sequential processing should

be implemented.

5.3.2 Computational Form of the Filter

Much work has been done in other studies on the computational
form of the filter. Selection of the form may have considerable impact
on numerical errors. The most common numerical error seems to
be that the filter covariance matrix loses its positive definiteness.

One method of solving the numerical problems of the covariance
matrix is to use the ''stabilized' form of the filter. This is done by
replacing step 15 of Table 5.1 by the equivalent form given in equa-
tion (3. 6d) of Section 3. This form of the filter requires considerably

more multiplications. Another stabilization procedure is to force

165

1 3




the result of the covariance reset in step 15 of Table 5.2 to be sym-

metric by averaging the off-diagonal elements, i.e.,

~ o~ _pij+p1'i
Py P~ 2

k .

P:.» ;ji are the new values

P;.» pji are the results of step 15.

Both of these techniques do not necessarily solve the precision
problem.

A different approach is through the square root formulation
of the filter. Carlson [26] and others have developed square root
fo. r@Pitions which solve the positive definiteness problem and also
alleviate precision problems. These method.e are well documented
in the literature [26. 27]. Another covariance factorization technique,
the U-D filter, which is not quite so well known is presented in refe-
rence 28. This formulation is equivalent in numerical performance
to the other square root formulations, but it does not require a square
root to be taken at each point of propagation. For a small processor,
this caﬁ‘lead to a significant time savings.

A summary of the U-D filter equations for the case of scalar
measurements is presented here. The reader is referred to reference
28 for a thorough explanation of the U-D mechanization.

Suppose, the n-dimensional error covariance matrix, P, is
factored such that

P = UDU" ‘ (5.1)
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where U is upper triangular with unity diagonal elements and
D= diag(dl, e dn)' The matrices U and D are referred to as
the U-D factors of P. They are unique, provided that P is positive

definite, and can be constructed using a Cholesky factorization [20].

U-D Measurement Update Algorithm

Given a priori covariance factors U and D and scalar measure-
ment z = Hx + v, where E(vz) = r, the updated U-D covariance factors

and the Kalman gain (U, D and K respectively) can be obtained as

follows:

B o R

f - =HU ;f -(fl....,fn) (5.2)
Df ; v, =d,f 5.3

s i iy it

—T n-1 ,

Kl = (vl,o,...,O) (5. 4)

al =r + vlil (5.5)

dl = (r/dl)dl ; (5.6)

For j=2,...,n cycle through

aj = aj-l + vjfj (5.7)

d = (@_,/a)d, (5.8)

Aj = "j/aj-l (5.9)
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U, - 'ij + AK (5.10)

(5.11)

wi
n
=1
-+
<
=

where U = [Ul' UZ' s ’Un ]. The component U vectors have the form
UT = (U.(1) U.(j-1), 1,0 0)
j b s o U, 2 1005 0iaay
and D = diag (dl' e ,dn). The Kalman gain is given by
K ="K 7 (5.12)
n n

The salient feature of this algorithm is the way in which the updated
diagonal D elements are computed., Since the quantities aj are calculated
as positive sums, it follows that the updated d's are fractions of their
a priori values and therefore cancellation errors present in the conven-
tional measurement updating equation are avoided. The positivity of D, and
hence of P, is therefore assured. Furthermore, the elements of D can
diminish to near-zero without affecting the stability of the algorithm.

Modified Givens techniques can be employed to accomplish time
updating of the U-D factors, and the resulting algorithm is the following:
Let

W = [GE°U] [wl'WZ""'wnﬂc]

D = Diag (D,I) = Diag (El. coesd )3 k= no. of columns of G

~

The U-D factors of P WBWT can be computed as follows: For

n

j = n,...,1 cycle through the following as indicated.

m: = j+k (5.13)

2
The symbol '': ='" denotes replacement (i. e., replace m by j+k).

168

-




D~ AN W A . I SR AT TS

APPSR, Y

B TR T ety

For i = m-1,...,1 evaluate Eqs. (5-14) - (5.27) as indicated.
a; = dmwm(j)
B: = d.w (j)

d’m: =aw_(j) + Bwi(j)

/
: = p/dm

d:=dd /d
i im m

If i =m-1 evaluate Eqs. (5.20) - (5.23)

c: = a/d
m

wi(‘)z = wm(j)V(‘) - V(j)wm(‘)
| AN TA

w_(4): = Zwm(l) + sv(L)
wi(j): =0, wm(j): =1

If 1i€m-1 evaluate
W‘(‘)t = v() - V(J)Wm(‘)

4 = l,oon;j'l

wm(‘)s s wm(‘) + :wi(‘)

o
When { €m-1, wm(j) LD
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16)

17)

18)
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w(j): = 0 (5.26)
d :=4d (5.27)

Upon completion of this recursion the W and D arrays contain U and D,

stored as follows

k n
W =[0ful}n e
dJ = dj+1< fad, 4 iu il (5.29)
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SECTION 6. - CONCLUSIONS

6.0 Conclusions of the Study

The purposes of this study were to develop and analyze navigation
algorithms for use in Navy NAVSTAR/GPS navigation receivers. By
performing algorithm design and analysis for various receiver configurations,
it was possible to provide data useful in certain trade-offs. This report
has presented much data and many results from which the reader may derive
his own conclusions. Changing requirements and hardware specifications
may at some point in time invalidate certain of the results summarized
below. Nonetheless the following conclusions have been drawn by ORINCON.

A. The Alert algorithm based on the approximate volume max-

imization or exhaustive search should be used.

B. The successive linearizations of the measurement matrix

method should be used to provide single fixes or pseudo-measure-

ments.

C. The multi-channel receiver gives better transient response

than the single channel receiver if the frequency of measurements

is the same. The single channel performance is nearly equivalent

to the multi-channel when the data rate is equal. This means that

if the single channel receiver can make n-measurements in the same

time that the n-channel receiver makes one measurement, tfxen the

single channel performance is on a par witii the n-channel reciever.

(This conclusion does not take inio account the possibility of reducing

ionospheric errors by using differant frequency channels. This is

,a different issue).

D. In order to provide good velocity estimates from the GPS data,

doppler measurements must be made. Without the doppler measure-

ments, position estimates are only slightly degraded, however the
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velocity errors are of the order of several knots.

E. The addition of acceleration states in the filter provides a
better velocity estimate in both the steady state and in the.
transient response to unmodelled acceleration.

F. The addition of a fading memory to the filter improves the
performance of the filter when unmodelled acceleration are pre-
sent. This is at the expense of the steady state performance when
there are no acceleration disturbances. Some sort of adaptive
fading memory would provide a good compromise solution.

G. The measurement update rate (within certain bounds) does not
appear to be a significant consideration in systems where there
are no unmodelled accelerations. The update rate becomes sign-
ificant when there are unmodelled accelerations.

H. The ionospheric errors appear to be a significant error source.
The value of the error source is an uncertain quantity at this time.
More data should be gathered on the proposed ionospheric cor-
rection schemes for the single and dual frequency receivers.

I. The receiver TOA measurement error is not as significant an
error source in relation to the overall position error as is the
doppler measurement error in relation to the overall velocity
error. This is of course only in the ranges considered in this
study. Emphasis should be placed on improving the doppler meas-
urement accuracy.

J. For low accuracy systems where an accurate velocity estimate
is not needed, the & -B filter provides a computationally simple
filter when combined with the pseudo-measurements generated by

the successive linearizations algorithms.

K. Sequential processing of the data should be done to save computer

storage and computation time. Also a factorization technique should
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probably be used.

In all of the above conclusions, the unmodelled accelerations refer
to unaided systems. The amount which the response to unmodelled accel-
erations should be weighed in making any design trade-offs is of course
dependent on the expected amount of acceleration disturbances (both

frequency and magnitude of disturbances).
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APPENDIX A
Filter Sensitivity to a Class of

Unmodelled Errors

In this appendix, a simple method will be developed for
attacking a particular problem in the covariance analysis of subop-
timal filters. The problem being considered is that of determining
sensitivity to unmodeled error sources of a certain class. The class
of unmodeled errors is somewhat restrictive, but it is rich enough
to be of practical importance.

The setting for cocvariance analysis is as follows. Firsta
reference system is defined which contains all of the error sources
modeled.

B K1 B T s

(A-1)

VRER T TR {

where

1%

is the n‘ state vector at time k

O, is the n x n_ state transition matrix from time
k, k-1 B
k-1 to k
rk’ k.1 18 the n xr_input disturbance at time k
Z is the m observation vector at time k
—k 8
H.k is the ms x n’ measurement matrix at time k
!k is the mg observation noise vector at time k
I_Jk is the T vector of input noise at time k

It is desirable to estimate certain states of L‘. but due to
computer size restrictions certain of the states will not be modeled
in the "suboptimal filter'. Let zk be the ng state vector of the sub-
optimal filter. The model for )_Ck is
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Based upon the model in (A-2) (and possibly other constraints)
a set of filter gains are computed. Consider the case’ where Zk
is a subvector of _}Sk It is of interest to look at the difference
between the estimate of Zk (denoted &() and the reference vector

51( In particular, consider the covariance matrix P defined by

P,_=ElX, - ick*)(zk - i(k*)T] (A-3)

where the * indicates the vector has been augmented with zeroes
sufficient to make the subtraction well defined.
AR
Let g denote the vector difference (2(_k - _)ik). With
a submatrix of wk’ k-1 and H'k a submatrix of Hk’ the time

Pk, k-1 g
evolution of L‘ can be described by

S, ’ 2 T
M B S T R T salem
$ * 1 (T | % *T
Pk— In. (Kkl-H() Pk Ins (KkH'k) + K RkK (A-4b)
where In is the n_xn, identity matrix
B
and the * indicates that the matrix with n, rows has been aug-

mented with (n_ - n.) rows of zeroes so that the matrix
operations are well defined.

'A more general case which includes errors in ®, Fand H may

also be considered.
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The matrices P;( and Pk contain the information about the
variances of the error in the estimate _Y;k With the filter gain
matrix Kk defined, equations (A-4a) and (A-4b) are linear equations
for the covariance matrix Pk for all k. It thus makes sense to
determine the sensitivity of the variance of the filter states to the
variances of the unmodeled error sources. It has been suggested
[A-1] that to do this, each individual error source be evaluated
separately by propagating equations (A-4a) and (A-4b) for each
error source. However, for a certain class of unmodeled error

sources, the sensitivity may be determined in the presence of other

error sources in just one propagation of equations (A-4a) and (A-4b).

To define this class of error sources, partition g as follows:

where
511( is the subset of)_CI: not in the class of interest 5:( is a

n -vector wheren 2n
c ¢ f

is the subset of L: which is the class of interest l(_lz(

g

isa(n -n )-vector
s c

The class of error source for E: is characterized by

' 1
®11 %12 By T k-t
* Uy (A-5)

2
o o o
2/y 4 X1

X,

"
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where the partitioning is comformable with the state vector parti-
tion.

To show how the sensitivity of an error source in this class
may be determined in the presence of other error sources, the equa-
tions for the propagation of the inverse of Pk will be developed. It
will be apparent from these equations that the effects of the class of
error sources considered may be easily removed from the inverse
covariance matrix. Reinverting the remaining part of the inverse
covariance matrix will yield the estimation error covariance matrix
in the absence of the error source. The decrease in variance divided
by the variance of the error source used in the covariance analysis
defines the sensitivity.

Using the state transition matrix and input noise distribution

matrix from (A-5) in (A-4a), the following is obtained

T T
%1 %2 : o TR Pkl Toeer ©
sz Pk % i + (A—6)
o %, 2 %2 i o
k, k-1 X, kel

where again the partitioning is comformable with

X
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This may be rewritten as
®11 %12

T
O % o ¢ () (o) ®,, P
22 K, k-1 22 k-1, k 12 22}(—1,1(

T
“n o

"irz ”;z
K, k-1

®; ©

(A-7)
T T
©12 %2
k. k-1

where use has been made of the property that ((Ok k_l).l ~

for any state transition matrix.

Likewile the covariance after estimation, equation (A-4b)

may be rewritten as

PI

e, (B "(‘n. ; “‘k"x").l K*RkK*T(In. : «Kkﬂk)*)r g
b, - o0 T il
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Before proceeding to simplify (A-8) further, the following
result which will prove useful is noted.

A ay! N S 1
G (] )

O C o C
for arbitrary size partitions when A and C are nonsingular and O
is a matrix of zero.

Using the fact that ﬁk is the submatrix of Hk,which is con-
formable with the filter state vector and (A-9) in (A-8),the following
is obtained

(1 i lﬂ(ﬁk)'l KRK (1 . Kkﬁk)'r-l o
p Mg
P = il", 2 (Kka)*z Px

o ®)

{In. - (Kka)*} T (A-10)

Equations (A-7) and (A-10) may now be inverted with relative
ease. The only hard part is the matrix sum sandwiched in both
equations. Since they both have the same basic form, they can be

looked at as inverting the following
o} -1

Qo q[R©° o
P, + = (1+P, ) » (A-11)
oo oo
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be partitioned as (using the known symmetry)

o i ’
P P P
12 &2 K 1 22 K
¢ (A-11) becomes
: A L O R -
11 11 12
(1l ( = I+
¥

; o T

O
O plZ Q -3 K PIZ pZZ K

and using the transpose of (A-9)

: -1 -1

Q O (1+P Q) o PPy
et ; T 1 T
o o P, QU+P Q7 1 e B
k K
1+P. QP 1+P..Q 'p
11 11 11 12
T -1 T T i
-Pj,QI+P,Q " P, +P, -P,Qu+P QP ,+P,, k
(1+P Q)'lP 1+P Q)‘lp
11 11 11 12
= (A-12)

T -1 T : -1
Plz(l + PuQ) .PIZQ(I + P"Q) PlZ +P
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Now if in equation (A-7) (p“ rk k-1 l";f o w'lrl = ¢k k-1 is

identified with Q in equation (A-12), then the extrapolation for the

inverse covariance matrix is

X ©
& 11
P, =
T T
®2 %20
k1. k
(1+P ¢ iy 1+P ¢ yle
1%, k-1 11 1%, k-1 11

1 -1

T ’ - : /T ¢ #
TR R PR aat PR L) Bt Py,

k-1

°1n %2
(A-13)

o ’22 k,-l,k

Now in equation (A-10) identify with Q an nc x nc matrix

(o, - 5AY s (1, SHF o

(o) o)

= lk (A-14)

where the zeroes are matrices of appropriate size to make up the

difference (nc - nf).
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Also let

H_ = [H : H] (A-15)

Then a partition of ;In. - (Kka)*i » conformable with

1
the partition of < Lz( ) can be obtained using equation (A-9) as
X
i AN
1 -
SR e G
o L n
( Kkﬂk) “ (!&Hi)" (l&ﬂi)
ln<: ; O % Inc X o o
o I o
(A-16)
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Using equations (A-10), (A-12), (A-14), and (A-16), the inverse

of P;( can be expressed

-1
(I+ P1 lzk) Pll

1+P E)'lp

11 12

T -1

-P,E(I+P =) P _+P, ;
-1

gl 8

L S X

i n
" o) o
1
n -n
8 C
(A-17)
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Now from equations (A-13) and (A-17) it is apparent that the
upper left block of the inverne covariance matrix (i.e., the part
associated with the state in }_Ck) is unaffected by the model for the
error states in l‘k In fact, the propagntion of the upper left block
is the same as it would be if the states 4 were not even considered.
Thus, the effect of this class of error source may be removed from
the covariance matrix at any point in time simply by removing the
appropriate rows and columns from the inverse and then reinverting
the remaining submatrix.

It may be noted at this point that the inverting of a large
covariance matrix, elimination of a few rows and columns and rein-
version of the remaining matrix is a rather cumbersome procedure.
This is especially true for large matrices and for may sets of error
sources to be examined. So at this point, it will be shown that the
desired result may be obtained without inverting any large matrices.
The only inverse required has the dimension of the error model whose
sensitivity is desired.

From the partition of P , the desired matrix for the sensi-

tivity analysis is P First partition Pk conformable to the parti-

1 ll :
tion of Pk
-4 -1
yll plz Pll plz
P = = (A-18)
g PL P
12 22 12 22
Then look at the product PklPk =1 in terms of the partitioned

blocks of (A-18) and in particular note

T
p“p“ + szis:z (A-19a)

puﬂlz + plzpzz (o) (A-19b)
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From the relations in (A- 19), the matrix Pl: may be obtained

explicitly in terms of the submatrices of Pk as follows. From (A-19a)

P =1-p, BL P! (A-20)
11 12712 11 S
From (A-19b)
Pp_=-p B 5! (A-21)
2 TN 28 £
With (A-21) in (A-20)
~_1~T 1
Piy " BF Pllplzpzzplz) "

& -1 ~ ~_1=T ~-1
=By PP P PP

Then
~ ~ - ~T -v-l N-l
pu“ A PlZPZ 1zp11’ £ Pu
Finally
«1 1T ~-1 ~
pu g plzpzzplzpu) Pll

~ ~ _l~T
'pu plZ 22p12 (A-22)
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So if each error source is considered individually, the only
inversion required is a matrix of the order of the error model. In
the case of an error model which contains only one state, equation
(A-22) is particularly simple. In fact, if it is only of interest to
determine the variance reduction, then for each state in }_{i the

following holds

2 2 2
ci = ci (1 - ri) (A-23)
where

gl ’ .th B

o, is the new variance of the i*" state of -}sk with the
error removed

Of' is the variance of the ith state before the error
is removed

r is the correlation coefficient between the ith state of

}_ﬁl( and the removed error state.

The sensitivity of the ith state of )_(ll( to the error removed

is thus
ro
o, = (A-24)
i 2
(14
where
EA is the sensitivity to the removed error state
az is the variance of the error state which was used
to determine cf.
Referenée

A-1. Gelb, A., ed., Applied Optimal Estimation, the MIT Press,
Cambridge, Massachusetts, 1974,
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Appendix B

Model for Correlated lonospheric Delay Errors

The model given in [1] for the ionospheric delay error indicates
that in addition to the time correlation, there is a spatial correlation.
In the case of a single satellite signal, this spatial correlation was con-
verted to an equivalent time correlation by using the constant speed of
the ionospheric pierce point of the signal. However, this spatial corre-
lation term introduces cross-correlations among the various satellite
signals. Ignoring these correlations in the reference system model
would yield error analysis results which are pessimistically large.

A model which produces the appropriate autocorrelation for the

ionospheric delay error is given by

x = --:;:-*-J—ircu(t) (B-1)

where

2
O is the variance of the state x
T is the associated time constant

u(t) is a white noise with unity PSD

This standard model for a Gauss-Markov process can be used
to generate the ionospheric residual error for each satellite signal, In
addition to requirements on the autocorrelation, it is desired to have the
model generate the proper cross correlation. In particular, let x, and

1
x, denote the ionospheric delay error states for two satellite signals.

. 1 3
ot il *J: 0,u,yt)
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:

. 1 2
= .= J = 3.
x, T %2 + - Ozuz(t) (B-2)
From [1], the desired cross covariance is

Rxx(o) =0

0_ exp(-2Ap /2500 km) (B-3)
1%2 s

1

where

0. = €csc| JEIZ + (180)21

1

€ is the correction residual
E. is the elevation angle of the LOS vector
1

Ap is the distance between the ionospheric pierce points

= 'Rl - R.zl where Ri is the position of the pierce point

Using the steady state values for x and x,

R_ . (0) = E[xl(t) xz(t)]

1%2
_(t-() _t-n)

R (0)=E{§u'¢ce L d¢<um)ae . d}

x.X 1 1 A 2

1%2 £ 2

t t
Sdt Sdn E[u,(€h,(n)looe Te Te
-®

Now let u, and u, have a cross correlation of ¥8(t),
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T
Using (A-3) and (A-4)

Y = (%) exp(-Ap /2500 km)

The required G matrix to generate the correlated driving noises

ul and “2 from uncorrelated white noises u. and \T can be found from

1 2
E (ul uz) = E[G ¥ (ul uz) G ]
\lz uz
\ll #
=GE\,. )&% |G
Y2
s GGT
Then
2 2 2
°, (,) °1°z(r’ exp (-Ap /2500)
GGT-
2 2. 2
0102(;) exp (-Ap/2500) °z(7r')

The extension to four correlated ionospheric delay errors is now straight-
forward.
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CANOMIS:

ECI:

EM-log:

GDE:

GDOP:

GPS:

PSD:

RMS:

TOA:

WGS:

APPENDIX C

Glossary of

Abbreviations and Acronyms

Covariance ANalysis Of Multisensor Integrated System -

an ORINCON computer program for covariance analysis

and Monte Carlo simulation.

Earth Centered Inertial - a coordinate frame with

origin at the center of the Earth and fixed in inertial

space.

Electro Magnetic log - a ship's instrument to determine

speed with respect to the water.

General Dynamics Electronics - the prime contractor

for the NAVSTAR system.

Geometric Dilution Of Precision - a relative measure

of satellite constellations.
Global Positioning System

Newton Raphson - a numerical technique for itcrative

solution of nonlinear equations.
Power Spectral Density

Root Mean Square - the square root of the average of

squares of a set of numbers.

Root Sum Square - the square root of the sum of squares

of a set of numbers.
Time-of-Arrival

World Geodetic System
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